На нашем сайте вы можете читать онлайн «Маркетинг B2B: часть вторая». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Учебная и научная литература, Прочая образовательная литература. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Маркетинг B2B: часть вторая

Дата выхода
19 января 2022
Краткое содержание книги Маркетинг B2B: часть вторая, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Маркетинг B2B: часть вторая. Предисловие указано в том виде, в котором его написал автор (Маргарита Васильевна Акулич) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Эта книга, по сути, является продолжением книга М. В. Акулич «Маркетинг B2B». В данной книге рассмотрен ряд важнейших и актуальных аспектов, касающихся B2B-маркетинга, таких как «Искусственный интеллект: возможности и применение в продажах и маркетинге в сфере B2B», «B2B-маркетинговые способы продвижения», «Построение долгосрочных B2B-отношений» и др. Сформулированы некоторые полезные рекомендации.
Маркетинг B2B: часть вторая читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Маркетинг B2B: часть вторая без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Эти «ценные прошлые клиенты» использовались в качестве основы для выявления «двойников», которые не были клиентами Harley-Davidson, но в остальном отвечали многим критериям группы и, следовательно, являлись отличными потенциальными клиентами.
Таким образом, прогнозный подсчет потенциальных клиентов делает оценку возможностей продаж не только более эффективной и масштабируемой, но и более объективной, т.е. независимой от субъективных факторов. Подобные системы обычно уже интегрированы в системы автоматизации маркетинга.
Пример Hubspot [2]:
«С помощью искусственного интеллекта компания может с самого начала отсортировать менее перспективные контакты и тем самым сократить продажи данным контактам».
2.3 Прогнозирование. Перекрестные и дополнительные продажи
Прогнозирование
Продукты и услуги продаются лучше всего, когда спрос особенно высок. Когда именно это происходит, можно отследить с помощью AI (по данным).
Прогнозирование может помочь предсказать потенциальные результаты продаж на основе вероятностных моделей, основанных на данных.
Искусственный интеллект и прогнозная аналитика повышают качество прогнозов продаж и прогнозов доходов. Бизнес-решениями можно лучше управлять, цели – определять более четко, а бюджеты и ресурсы – более точно. Хорошие модели прогнозирования одновременно корректируют прогнозы или предоставляют сигналы раннего предупреждения, чтобы избежать чрезмерных отклонений от целей.
Перекрестные и дополнительные продажи
Алгоритмы могут значительно улучшить основу для продажи дополнительного продукта или услуги существующему клиенту.
С помощью искусственного интеллекта может быть проведен детальный анализ корзины покупок на основе CRM и ERP. Данные о продажах могут быть получены до перекрестных продаж, чтобы рассчитать и спрогнозировать вероятность успешных перекрестных продаж. У менеджеров по продажам есть прочная основа для принятия решения о том, когда именно стоит предложить покупателю дополнительный продукт или дополнительное предложение.
Платформы AI, такие, например, как Jetlore, способны анализировать и интерпретировать сотни страниц интернет-магазина, чтобы понять предпочтения потребителей.
Базовый AI использует данные клиентов для создания таких рейтингов, в рамках которых клиенты могут быть особенно заинтересованы в определенных продуктах или процессах.











