Главная » Знания и навыки » Ключевые идеи книги: Как учится машина. Революция в области нейронных сетей и глубокого обучения. Ян Лекун (сразу полная версия бесплатно доступна) Smart Reading читать онлайн полностью / Библиотека

Ключевые идеи книги: Как учится машина. Революция в области нейронных сетей и глубокого обучения. Ян Лекун

На нашем сайте вы можете читать онлайн «Ключевые идеи книги: Как учится машина. Революция в области нейронных сетей и глубокого обучения. Ян Лекун». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Научно-популярная литература. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.

0 баллов
0 мнений
7 чтений

Автор

Smart Reading

Дата выхода

17 мая 2021

Краткое содержание книги Ключевые идеи книги: Как учится машина. Революция в области нейронных сетей и глубокого обучения. Ян Лекун, аннотация автора и описание

Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Ключевые идеи книги: Как учится машина. Революция в области нейронных сетей и глубокого обучения. Ян Лекун. Предисловие указано в том виде, в котором его написал автор (Smart Reading) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.

Описание книги

Это саммари – сокращенная версия книги Яна Лекуна «Как учится машина. Революция в области нейронных сетей и глубокого обучения». Только самые ценные мысли, идеи, кейсы, примеры.

Будут ли роботы управлять миром? Останутся ли люди без работы? И ждет ли нас восстание машин? Эти вопросы мы задаем себе и окружающим, когда слышим о новых достижениях в области машинного обучения и искусственного интеллекта. Однако все не так страшно, потому что мозг компьютера не обладает гибкостью и универсальностью человеческого мозга. Компьютерные нейроны – всего лишь математические функции, рассчитанные программой. А самые сложные и мощные компьютеры – узкопрофильные машины. Они могут обыграть человека в шахматы, за секунду найти нужное изображение среди миллионов картинок, но они учатся медленнее людей и даже животных. И главное – у машин нет ни грамма здравого смысла. О том, что из себя представляют машины сейчас и чего ждать в будущем, вы узнаете из саммари книги «Как учится машина».

Ключевые идеи книги: Как учится машина. Революция в области нейронных сетей и глубокого обучения. Ян Лекун читать онлайн полную книгу - весь текст целиком бесплатно

Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Ключевые идеи книги: Как учится машина. Революция в области нейронных сетей и глубокого обучения. Ян Лекун без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.

Текст книги

Шрифт
Размер шрифта
-
+
Межстрочный интервал

На механизмах глубокого обучения и нейронных сетей работают современные компьютерные системы, включая автономные автомобили. Столкнувшись с ограничениями перцептрона, исследователи стали накладывать несколько слоев нейронов друг на друга, чтобы машины могли решать более сложные задачи. Принцип обучения остался прежним: параметры сети настраиваются таким образом, чтобы система допускала минимум ошибок. Сквозное обучение многослойных сетей – это так называемое глубокое обучение, или обучение преобразованию входных данных в осмысленные представления.

В простейших многослойных сетях все нейроны одного слоя связаны со всеми нейронами следующего слоя. В многослойной сети первичные слои выступают в роли экстракторов признаков, которые создаются не вручную, а автоматически – в процессе обучения. Функциональность многослойных нейросетей лучше всего иллюстрируют примеры, связанные с распознаванием изображений.

Проанализируем примеры различного написания букв C и D с помощью двухслойной сети, чтобы показать, как единицы первичного слоя могут обнаруживать шаблоны, характерные для C и D.

Перцептрон при решении подобной задачи ошибался, если варианты написания C и D слишком сильно различались по форме, положению или размеру. Однако если добавить еще один слой нейронов, проблема будет решена. Нейроны первичного слоя будут находить паттерны, характерные для C и D. Такие детекторы создаются автоматически, потому что в сети используется обратное распространение, которое автоматически обнаруживает отличительные особенности или шаблоны.
Например, непрерывная линия с двумя открытыми концами характерна только для C. Наличие линий, образующих близкий к прямому угол, указывает на D и т. д. Первый слой ведет себя как экстрактор признаков, а второй – как классификатор, но все уровни сети обучаются одновременно.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию (https://www.

litres.ru/pages/biblio_book/?art=65077852) на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

notes

Примечания

1

Флоп (англ. flop) – внесистемная единица измерения производительности компьютеров.

Добавить мнение

Ваша оценка

Кликните на изображение чтобы обновить код, если он неразборчив

Мнения

Еще нет комментариев о книге Ключевые идеи книги: Как учится машина. Революция в области нейронных сетей и глубокого обучения. Ян Лекун, и ваше мнение может быть первым и самым ценным! Расскажите о своих впечатлениях, поделитесь мыслями и отзывами. Ваш отзыв поможет другим читателям сделать правильный выбор. Не стесняйтесь делиться своим мнением!

Другие книги автора

Понравилась эта книга? Познакомьтесь с другими произведениями автора Smart Reading! В этом разделе мы собрали для вас другие книги, написанные вашим любимым писателем.

Похожие книги