Главная » Знания и навыки » Введение в финансовую математику (сразу полная версия бесплатно доступна) Георгий Димитриади читать онлайн полностью / Библиотека

Введение в финансовую математику

На нашем сайте вы можете читать онлайн «Введение в финансовую математику». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Словари, справочники, Руководства. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.

0 баллов
0 мнений
4 чтения

Дата выхода

09 июля 2020

Краткое содержание книги Введение в финансовую математику, аннотация автора и описание

Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Введение в финансовую математику. Предисловие указано в том виде, в котором его написал автор (Георгий Димитриади) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.

Описание книги

Учебное пособие содержит введение в финансовую математику. Оно описывает, что такое платежи, какие бывают процентные ставки наращения и дисконта, сложных и простых процентов, их связь, как рассчитывают стоимость потоков платежей, внутреннюю норму доходности, что такое аннуитет и другие вопросы.

Книга будет полезна как студентам и аспирантам, изучающим финансовую математику, рассчитывающим доходность кредитов, банковских вкладов и инвестиционных проектов, так и специалистам-практикам, которые смогут найти в ней ответы на практические вопросы.

Введение в финансовую математику читать онлайн полную книгу - весь текст целиком бесплатно

Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Введение в финансовую математику без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.

Текст книги

Шрифт
Размер шрифта
-
+
Межстрочный интервал

Поскольку сложные проценты начисляются на капитализированную сумму, после второго периода n

наращенная сумма составит:

После k-ого периода n

найдем требуемую наращенную сумму:

Из полученной формулы можно сделать следующие выводы, аналогичные тем, что были сделаны ранее для простых процентов: размер наращенной суммы не зависит от порядка чередования периодов с различными процентными ставками. Кроме того, если в два или более периода имело место одна и та же процентная ставка, то для целей расчета наращенной суммы их можно объединить в один, длительность которого равна сумме длительностей исходных промежутков.

Аналогично предыдущему можно ввести понятие эффективной ставки сложных процентов (см. подробнее об этом ниже):

Здесь ?

= n

/ n – доля промежутка n

в полном сроке рассматриваемого кредита. Получается, что для случая с переменной процентной ставкой можно ввести понятие эффективной процентной ставки сложных процентов, рассчитываемой как взвешенное произведение процентных ставок каждого периода, и которую можно использовать как единый эквивалент для расчета наращенной суммы:

S = P (1 + i

)

.

Сложные проценты с начислением чаще, чем раз в год

Во всех рассуждениях ранее при использовании сложных процентов предполагалось, что они начисляются один раз в год. Однако на практике встречаются случаи, когда начисление происходит чаще.

Пусть оно происходит m раз в год, где m – натуральное число. Например, начисление может происходить ежемесячно (m = 12).

Для сложных процентов с начислением один раз в год была получена формула:

S = P (1 + i)

.

Теперь мысленно предположим, что в рассуждениях, из которых была выведена эта формула, период времени «год» будет заменен на период времени «1/m года» или «m-ая доля года». Поскольку все рассуждения останутся в силе, получим формулу:

где i

– процентная ставка за «m-ую часть года», n

– срок, отраженный в «m-ых частях года» (а не в годах, как ранее).

Для того, чтобы вернуться к используемым ранее обозначениям выразим i

и n

через годовые переменные:

i

=i / m, n

= mn.

Последнее соотношение легко интерпретируемо: при сроке n лет количество периодов размером «1/m года» равно mn.

Добавить мнение

Ваша оценка

Кликните на изображение чтобы обновить код, если он неразборчив

Мнения

Еще нет комментариев о книге Введение в финансовую математику, и ваше мнение может быть первым и самым ценным! Расскажите о своих впечатлениях, поделитесь мыслями и отзывами. Ваш отзыв поможет другим читателям сделать правильный выбор. Не стесняйтесь делиться своим мнением!

Другие книги автора

Понравилась эта книга? Познакомьтесь с другими произведениями автора Георгий Димитриади! В этом разделе мы собрали для вас другие книги, написанные вашим любимым писателем.

Похожие книги