На нашем сайте вы можете читать онлайн «Подготовка набора данных для обучения и тестирования программного обеспечения на основе технологии искусственного интеллекта. Учебное пособие». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Медицина. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Подготовка набора данных для обучения и тестирования программного обеспечения на основе технологии искусственного интеллекта. Учебное пособие

Жанр
Дата выхода
17 января 2024
Краткое содержание книги Подготовка набора данных для обучения и тестирования программного обеспечения на основе технологии искусственного интеллекта. Учебное пособие, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Подготовка набора данных для обучения и тестирования программного обеспечения на основе технологии искусственного интеллекта. Учебное пособие. Предисловие указано в том виде, в котором его написал автор (Юрий Александрович Васильев) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Рекомендовано Координационным советом по области образования «Здравоохранение и медицинские науки» в качестве учебного пособия для использования в образовательных учреждениях, реализующих программы дополнительного профессионального образования врачей, изучающих дисциплину «Общественное здоровье и здравоохранение». Рецензенты: Нуднов Н.В. – д.м.н., проф., ФГБУ «РНЦРР» МЗ РФ; Лебедев Г.С. – д.т.н., проф., директор ИЦМ Сеченовского Университета.
Подготовка набора данных для обучения и тестирования программного обеспечения на основе технологии искусственного интеллекта. Учебное пособие читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Подготовка набора данных для обучения и тестирования программного обеспечения на основе технологии искусственного интеллекта. Учебное пособие без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
В случае локализации врачу необходимо обозначить координаты области интереса простой геометрической фигурой, в случае сегментации – обвести контур области интереса, т.е. создать пиксельную маску. Для уровня 2 (классификация находки) необходимо классифицировать находку, используя общепринятые шкалы (например, BI-RADS[14 - BI-RADS – Breast Imaging Reporting and Data System – стандартизированная шкала оценки результатов маммографии, УЗИ и МРТ по степени риска наличия злокачественных образований молочной железы. Breast Imaging Reporting & Data System | American College of Radiology [Internet].
Классификация отображает взаимосвязь:
– объемов и качества исходных данных;
– трудозатрат на подготовку;
– методик разметки и работы с первичными данными;
– диагностической ценности.
Стоит отметить, что данная классификация применима в случае поиска патологических находок. Для некоторых НД, например, при задаче сегментации анатомической структуры, подтверждение диагноза неприменимо, соответственно данную классификацию использовать нельзя.
Также разметку данных можно разделить на проспективную и ретроспективную, т.е. по времени их получения.
Проспективная разметка аналогично ретроспективной разметке представляет собой сбор элементов в соответствии с поставленной целью, при этом обязательным условием является проведение дополнительных манипуляций с элементами (например, постановка метки начала и окончания события, меток обнаружения признаков, обозначений патологий и т.
Ретроспективная разметка данных представляет собой сбор элементов в соответствии с метаданными, которые отбираются по поставленной цели.





