На нашем сайте вы можете читать онлайн «Подготовка набора данных для обучения и тестирования программного обеспечения на основе технологии искусственного интеллекта. Учебное пособие». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Медицина. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Подготовка набора данных для обучения и тестирования программного обеспечения на основе технологии искусственного интеллекта. Учебное пособие

Жанр
Дата выхода
17 января 2024
Краткое содержание книги Подготовка набора данных для обучения и тестирования программного обеспечения на основе технологии искусственного интеллекта. Учебное пособие, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Подготовка набора данных для обучения и тестирования программного обеспечения на основе технологии искусственного интеллекта. Учебное пособие. Предисловие указано в том виде, в котором его написал автор (Юрий Александрович Васильев) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Рекомендовано Координационным советом по области образования «Здравоохранение и медицинские науки» в качестве учебного пособия для использования в образовательных учреждениях, реализующих программы дополнительного профессионального образования врачей, изучающих дисциплину «Общественное здоровье и здравоохранение». Рецензенты: Нуднов Н.В. – д.м.н., проф., ФГБУ «РНЦРР» МЗ РФ; Лебедев Г.С. – д.т.н., проф., директор ИЦМ Сеченовского Университета.
Подготовка набора данных для обучения и тестирования программного обеспечения на основе технологии искусственного интеллекта. Учебное пособие читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Подготовка набора данных для обучения и тестирования программного обеспечения на основе технологии искусственного интеллекта. Учебное пособие без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Как правило, такой способ разметки используется на первых этапах отбора данных и может быть осуществлен с помощью алгоритмов автоматического анализа текстовых протоколов, например MedLabel[12 - Свидетельство о государственной регистрации программы для ЭВМ №2020664321 Российская Федерация. MedLabel – автоматизированный анализ медицинских протоколов: заявл. 11.11.2020 / Морозов С. П., Андрейченко А. Е., Кирпичев Ю. С. [и др.]; заявитель ГБУЗ «НПКЦ ДиТ ДЗМ».]. Следующим по ценности методом верификации является экспертный пересмотр: слепой анализ исследований врачами-экспертами с достижением заданного уровня согласованности их решений (подробно описан в подпараграфе 3.
На рисунке 2 представлена классификация видов разметки на примере рака молочной железы (РМЖ) с учетом ценности разметки.
Рисунок 2 – Классификация видов разметки в медицинской диагностике по диагностической ценности
В наиболее общем виде разметка данных может проводиться на основании:
А. Информации об имеющейся целевой патологической находке, представленной на изображении в виде пиксельной маски (оконтуренной области изображения).
B. Информации об имеющейся целевой патологической находке, представленной в виде координат. Может помещаться в метаданных (в аннотации, в сводном табличном сопроводительном файле) и/или присутствовать на изображении в виде отметки области расположения простой геометрической фигурой.
С. Информации о наличии/отсутствии целевой патологической находки, содержащейся в метаданных (то есть в аннотации – сопроводительных файлах) и отсутствующей на изображении.
Классификация A, B, C для уровня 3 (обнаружение находки) предполагает вовлечение врачей-экспертов с целью поиска (наличие/отсутствие – С), локализации (В) и сегментации (А)[13 - Willemink M. J., Koszek W. A., Hardell C., et al. Preparing medical imaging data for machine learning // Radiology. 2020. Vol. 295, №1. P. 4—15].





