На нашем сайте вы можете читать онлайн «Частотный анализ числовых и текстовых данных. Учебное пособие». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Словари, справочники, Руководства. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Частотный анализ числовых и текстовых данных. Учебное пособие

Автор
Дата выхода
12 апреля 2023
Краткое содержание книги Частотный анализ числовых и текстовых данных. Учебное пособие, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Частотный анализ числовых и текстовых данных. Учебное пособие. Предисловие указано в том виде, в котором его написал автор (Валентин Юльевич Арьков) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Данная работа посвящена применению современных методов и технологий больших данных в курсе бизнес-аналитике и статистики. Анализ частоты появления различных значений — один из способов первоначальной обработки данных. Чаще всего его относят к описательной статистике или аналитике. Подсчет частот имеет отношение распределению. Поэтому для успешного восприятия материала желательно освежить в памяти основы теории вероятностей и математической статистики.
Частотный анализ числовых и текстовых данных. Учебное пособие читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Частотный анализ числовых и текстовых данных. Учебное пособие без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
На самом деле это псевдослучайные числа, которые получают путём вычислений. Внешне они выглядят как случайные.
Рис. Инициализация генератора
После выполнения ячейки слева от неё появляется зеленый символ «галочка». Кроме того, в квадратных скобках указано число. Оно указывает, в каком порядке выполнялись ячейки. В блокноте Jupyter можно выполнять ячейки в любом порядке, причем можно запускать их много раз.
Во время работы с блокнотом советуем регулярно нажимать комбинацию клавиш [Ctrl + S] для сохранения.
Теперь мы вызываем генератор случайных чисел и передаем ему параметры распределения и объем выборки, см. рис.
Рис. Генерируем выборку
Выводим на экран первые 10 элементов массива x. Мы не указываем начальный индекс, поэтому используется нулевой элемент. После символа двоеточия указан номер 10, но элемент с номером 10 не выводится. Мы увидим только элементы с номерами от нуля до девяти – это особенность Python.
При работе в блокноте нам не обязательно использовать функцию print. Достаточно указать имя переменной, см. рис.
Рис. Начало массива
2.2. Гистограмма
Переходим к построению гистограммы.
Для создания графиков мы будем использовать библиотеку matplotlib. Из этой библиотеки мы загружаем модуль pyplot и назначаем ему псевдоним plt.
Теперь мы можем вызвать функцию построения гистограммы hist. В качестве параметра передаём имя нашего массива x.
Над графиком выводится дополнительная информация: абсолютное частоты попадания в каждый интервал и границы интервалов группировки, см. рис.
Рис. Гистограмма: настройки по умолчанию
При построении гистограммы мы не указали количество интервалов группировки. По умолчанию используется 10 интервалов. Чтобы задать другое значение, укажем параметр bins, см.
Обратим внимание, что при вызове функций в Python мы можем передавать им параметры в любом порядке и даже можем их пропускать. Чтобы справиться с такими ситуациями, мы явно указываем название параметра, затем ставим знак равенства и даём его значение, например, bins=n.
Команда plt.











