Главная » Знания и навыки » Введение в машинное обучение (сразу полная версия бесплатно доступна) Равиль Ильгизович Мухамедиев читать онлайн полностью / Библиотека

Введение в машинное обучение

На нашем сайте вы можете читать онлайн «Введение в машинное обучение». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Учебная и научная литература, Учебники и пособия для вузов. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.

Краткое содержание книги Введение в машинное обучение, аннотация автора и описание

Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Введение в машинное обучение. Предисловие указано в том виде, в котором его написал автор (Равиль Ильгизович Мухамедиев) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.

Описание книги

Учебник поможет студентам различных специальностей освоить современные технологии машинного обучения и практически использовать их в работе и научных проектах. В настоящем пособии даются весьма краткие теоретические и относительно подробные практические сведения о применении отдельных алгоритмов классификации и регрессии. Для практического освоения материала достаточно базовых навыков работы с языком Python. При этом освоение возможностей основных библиотек, таких как matplotlib, numpy, pandas, sklearn происходит в процессе решения задач. Используя полученные знания и навыки, студенты смогут решать широкий круг задач классификации, регрессии, анализировать влияние отдельных признаков на работу классификаторов и регрессионных моделей, снижать размерность данных, визуализировать результаты и оценивать качество моделей машинного обучения. Издание рекомендовано УМО РУМС.

Введение в машинное обучение читать онлайн полную книгу - весь текст целиком бесплатно

Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Введение в машинное обучение без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.

Текст книги

Шрифт
Размер шрифта
-
+
Межстрочный интервал

В задаче классификации можно считать, что

а в задаче регрессии

J(A(ob), y(ob)) = | A(ob) – y(ob) |

или

J(A(ob), y(ob)) = (A(ob) – y(ob))2.

Возникает закономерный вопрос: что же такое объект? В задачах машинного обучения объект – это некоторое множество параметров (признаков). Если некоторую сущность можно описать конечным набором параметров, то она может рассматриваться как объект в машинном обучении, причем ее физическая природа не имеет значения.

Тут будет реклама 1
Параметры могут задаваться исследователем, исходя из его представлений о наилучшем описании объекта, так, как это делается в «классических» задачах машинного обучения, или, с другой стороны, формироваться путем выполнения некоторой процедуры так, как это делается в глубоком обучении.

Таким образом, каждый объект ob описывается конечным набором (входных) параметров или свойств (input values or features) x

,x

,….x

, одинаковым для каждого ob

? Ob , а y называется целевой переменной (целевым параметром) (target value) в задаче регрессии или классом в задаче классификации.

Тут будет реклама 2

Алгоритм А может описываться конечным набором параметров ?

? ? или, как часто говорится при описании нейронных сетей, весов (weights) w

? W.

Задача обучения по примерам рассматривается как задача оптимизации, которую решают путем настройки множества параметров ? алгоритма А так, чтобы минимизировать значение функции стоимости J(?) по всем примерам m.

Тут будет реклама 3

В задаче регрессии алгоритм A часто называется функцией гипотезы, а функция стоимости определяется как сумма квадратов разности «предсказываемого» алгоритмом (функцией гипотезы) значения и реального значения у по множеству примеров m. При этом подбирается такая функция гипотезы h

(x), которая при некотором наборе параметров ?

? ? обеспечивает минимальное значение J(?).

Тут будет реклама 4

где m – множество обучающих примеров или объектов; x

– значение параметров или свойств для i-го объекта; y

– фактическое значение объясняемой или целевой переменной для i-го примера; h

– функция гипотезы, которая может быть линейной (h

= ?

+ ?

x) или нелинейной (например, квадратичная функция гипотезы одной переменной – (h

= ?

+ ?

x + ?

x

).

Добавить мнение

Ваша оценка

Кликните на изображение чтобы обновить код, если он неразборчив

Мнения

Еще нет комментариев о книге Введение в машинное обучение, и ваше мнение может быть первым и самым ценным! Расскажите о своих впечатлениях, поделитесь мыслями и отзывами. Ваш отзыв поможет другим читателям сделать правильный выбор. Не стесняйтесь делиться своим мнением!

Похожие книги