На нашем сайте вы можете читать онлайн «Введение в машинное обучение». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Учебная и научная литература, Учебники и пособия для вузов. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Введение в машинное обучение

Дата выхода
15 января 2024
Краткое содержание книги Введение в машинное обучение, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Введение в машинное обучение. Предисловие указано в том виде, в котором его написал автор (Равиль Ильгизович Мухамедиев) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Учебник поможет студентам различных специальностей освоить современные технологии машинного обучения и практически использовать их в работе и научных проектах. В настоящем пособии даются весьма краткие теоретические и относительно подробные практические сведения о применении отдельных алгоритмов классификации и регрессии. Для практического освоения материала достаточно базовых навыков работы с языком Python. При этом освоение возможностей основных библиотек, таких как matplotlib, numpy, pandas, sklearn происходит в процессе решения задач. Используя полученные знания и навыки, студенты смогут решать широкий круг задач классификации, регрессии, анализировать влияние отдельных признаков на работу классификаторов и регрессионных моделей, снижать размерность данных, визуализировать результаты и оценивать качество моделей машинного обучения. Издание рекомендовано УМО РУМС.
Введение в машинное обучение читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Введение в машинное обучение без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
В задаче классификации можно считать, что
а в задаче регрессии
J(A(ob), y(ob)) = | A(ob) – y(ob) |
или
J(A(ob), y(ob)) = (A(ob) – y(ob))2.
Возникает закономерный вопрос: что же такое объект? В задачах машинного обучения объект – это некоторое множество параметров (признаков). Если некоторую сущность можно описать конечным набором параметров, то она может рассматриваться как объект в машинном обучении, причем ее физическая природа не имеет значения.
Таким образом, каждый объект ob описывается конечным набором (входных) параметров или свойств (input values or features) x
,x
,….x
, одинаковым для каждого ob
? Ob , а y называется целевой переменной (целевым параметром) (target value) в задаче регрессии или классом в задаче классификации.
Алгоритм А может описываться конечным набором параметров ?
? ? или, как часто говорится при описании нейронных сетей, весов (weights) w
? W.
Задача обучения по примерам рассматривается как задача оптимизации, которую решают путем настройки множества параметров ? алгоритма А так, чтобы минимизировать значение функции стоимости J(?) по всем примерам m.
В задаче регрессии алгоритм A часто называется функцией гипотезы, а функция стоимости определяется как сумма квадратов разности «предсказываемого» алгоритмом (функцией гипотезы) значения и реального значения у по множеству примеров m. При этом подбирается такая функция гипотезы h
(x), которая при некотором наборе параметров ?
? ? обеспечивает минимальное значение J(?).
где m – множество обучающих примеров или объектов; x
– значение параметров или свойств для i-го объекта; y
– фактическое значение объясняемой или целевой переменной для i-го примера; h
– функция гипотезы, которая может быть линейной (h
= ?
+ ?
x) или нелинейной (например, квадратичная функция гипотезы одной переменной – (h
= ?
+ ?
x + ?
x
).





