На нашем сайте вы можете читать онлайн «Введение в машинное обучение». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Учебная и научная литература, Учебники и пособия для вузов. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Введение в машинное обучение

Дата выхода
15 января 2024
Краткое содержание книги Введение в машинное обучение, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Введение в машинное обучение. Предисловие указано в том виде, в котором его написал автор (Равиль Ильгизович Мухамедиев) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Учебник поможет студентам различных специальностей освоить современные технологии машинного обучения и практически использовать их в работе и научных проектах. В настоящем пособии даются весьма краткие теоретические и относительно подробные практические сведения о применении отдельных алгоритмов классификации и регрессии. Для практического освоения материала достаточно базовых навыков работы с языком Python. При этом освоение возможностей основных библиотек, таких как matplotlib, numpy, pandas, sklearn происходит в процессе решения задач. Используя полученные знания и навыки, студенты смогут решать широкий круг задач классификации, регрессии, анализировать влияние отдельных признаков на работу классификаторов и регрессионных моделей, снижать размерность данных, визуализировать результаты и оценивать качество моделей машинного обучения. Издание рекомендовано УМО РУМС.
Введение в машинное обучение читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Введение в машинное обучение без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Например, если мы рассматриваем задачу прогнозирования стоимости автомобиля, исходя из года его производства, то год производства будет являться входной переменной или свойством (x), а стоимость – целевой переменной (y) (рисунок 2.1).
Рисунок 2.1. Зависимость стоимости автомобиля от года выпуска
В таком случае мы решаем задачу регрессии одной переменной. Случай регрессии многих переменных возникает тогда, когда мы будем учитывать кроме года выпуска объем двигателя, количество посадочных мест, марку и т.
Забегая вперед, можно сказать, что для подбора параметров ?
необходимо, чтобы параметры x
?X (в многомерном случае), описывающие объекты, были выражены единицами одинаковой размерности и примерно одинаковой величины. Чаще всего путем нормализации стремятся представить все параметры в виде чисел в диапазоне 0?x?1 или –1?x?1. Вообще говоря, выбор функции нормализации зависит от класса задачи.
(x), которая минимизирует стоимость J(?).
2.2. Линейная регрессия одной переменной
Задача линейной регрессии формулируется как поиск минимальной функции стоимости (см. формулу 2.1) при условии, что функция гипотезы является линейной h
= ?
+ ?
x. Очевидно, что подобная функция соответствует линии в двумерном пространстве (рисунок 3.1a). Для нахождения оптимальной функции h
(x) применяется алгоритм градиентного спуска (gradient descent), суть которого заключается в последовательном изменении параметров ?
, ?
с использованием выражения:
где ? – параметр обучения; а
является производной функции стоимости по ?
.
При этом шаги алгоритма выполняются так, что вначале происходит одновременное изменение обоих параметров на основании выражения 2.





