На нашем сайте вы можете читать онлайн «Введение в машинное обучение». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Учебная и научная литература, Учебники и пособия для вузов. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Введение в машинное обучение

Дата выхода
15 января 2024
Краткое содержание книги Введение в машинное обучение, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Введение в машинное обучение. Предисловие указано в том виде, в котором его написал автор (Равиль Ильгизович Мухамедиев) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Учебник поможет студентам различных специальностей освоить современные технологии машинного обучения и практически использовать их в работе и научных проектах. В настоящем пособии даются весьма краткие теоретические и относительно подробные практические сведения о применении отдельных алгоритмов классификации и регрессии. Для практического освоения материала достаточно базовых навыков работы с языком Python. При этом освоение возможностей основных библиотек, таких как matplotlib, numpy, pandas, sklearn происходит в процессе решения задач. Используя полученные знания и навыки, студенты смогут решать широкий круг задач классификации, регрессии, анализировать влияние отдельных признаков на работу классификаторов и регрессионных моделей, снижать размерность данных, визуализировать результаты и оценивать качество моделей машинного обучения. Издание рекомендовано УМО РУМС.
Введение в машинное обучение читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Введение в машинное обучение без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
6), необходимо добавить дополнительные параметры, например, квадратные степени исходных параметров:
или их произведения и т.п.
Рисунок 2.6. Объекты, для которых необходима нелинейная граница разделения
Подбор параметров ? после выбора функции гипотезы выполняется так, чтобы минимизировать функцию стоимости вида:
Из двух частей функции стоимости, объединенных знаком +, вычисляется фактически только одна, так как в задаче классификации y может принимать только два значения: 1 и 0.
То есть в случае, если y = 0, стоимость для i-го примера принимает вид:
Таким образом, при минимальном значении функции стоимости в обоих случаях достигается максимизация вероятности принадлежности объекта к положительному классу для «положительных» объектов и минимизация вероятности для «отрицательных» объектов. По-другому логистический классификатор называется классификатором максимизации энтропии (maximum-entropy classification – MaxEnt).
Как и в случае с линейной регрессией, минимизация функции стоимости достигается с помощью алгоритма градиентного спуска (gradient descent), но также применяются Conjugate gradient [[36 - Martin Fodslette M?ller.
Логистический классификатор может быть применен и в отношении нескольких классов. В этом случае для каждого класса классификатор настраивается отдельно. Класс, к которому принадлежит новый объект, вычисляется расчетом значений всех функций гипотез и выбором из них максимального значения m
axh
(x), где i – номер класса. Другими словами, объект принадлежит к тому классу, функция гипотезы которого максимальна.
Как и в случае с линейной регрессией, для увеличения обобщающей способности алгоритма применяют регуляризацию (последнее слагаемое в нижеследующей формуле), которая позволяет уменьшить влияние величин высокого порядка:
Интересно, что производная функции стоимости логистической регрессии ровно такая же, как и производная функции стоимости линейной регрессии (вывод см.





