Главная » Знания и навыки » Введение в машинное обучение (сразу полная версия бесплатно доступна) Равиль Ильгизович Мухамедиев читать онлайн полностью / Библиотека

Введение в машинное обучение

На нашем сайте вы можете читать онлайн «Введение в машинное обучение». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Учебная и научная литература, Учебники и пособия для вузов. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.

Краткое содержание книги Введение в машинное обучение, аннотация автора и описание

Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Введение в машинное обучение. Предисловие указано в том виде, в котором его написал автор (Равиль Ильгизович Мухамедиев) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.

Описание книги

Учебник поможет студентам различных специальностей освоить современные технологии машинного обучения и практически использовать их в работе и научных проектах. В настоящем пособии даются весьма краткие теоретические и относительно подробные практические сведения о применении отдельных алгоритмов классификации и регрессии. Для практического освоения материала достаточно базовых навыков работы с языком Python. При этом освоение возможностей основных библиотек, таких как matplotlib, numpy, pandas, sklearn происходит в процессе решения задач. Используя полученные знания и навыки, студенты смогут решать широкий круг задач классификации, регрессии, анализировать влияние отдельных признаков на работу классификаторов и регрессионных моделей, снижать размерность данных, визуализировать результаты и оценивать качество моделей машинного обучения. Издание рекомендовано УМО РУМС.

Введение в машинное обучение читать онлайн полную книгу - весь текст целиком бесплатно

Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Введение в машинное обучение без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.

Текст книги

Шрифт
Размер шрифта
-
+
Межстрочный интервал

size)

y=f(x)

(x,y)=plusRandomValues(x,y) #добавление случайных величин

plt.figure(figsize=(9,9))

plt.plot(x,y,'.')

m=x.size

degree=19 #коэффициент регрессии

lambda_reg=0.00001

on=np.ones([m,1])

X=on

#расчет степеней свободной переменной в соответствии со степенью регрессии degree

for i in range(degree):

xx=np.power(x, i+1)

X=np.concatenate((X,xx),axis=1)

theta=np.array([np.random.rand(degree+1)])

h=np.dot(X,theta.T)

t0=time.time()

alpha=0.

Тут будет реклама 1
5

iterations=100000

for i in range(iterations):

theta=theta-alpha*(1/m)*np.dot((h-y).T,X) -(lambda_reg/m)*theta

h=np.dot(X,theta.T)

t1=time.time()

plt.plot(x,y,'.')

plt.plot(x,h, label='Regression degree = {:0.2f})'.format(degree))

leg=plt.legend(loc='upper left',shadow=True,fontsize=16)

leg.get_frame().set_facecolor('#0055DD')

leg.get_frame().set_facecolor('#')

leg.get_frame().set_alpha(0.9)

plt.show()

2.

Тут будет реклама 2
4. Классификаторы. Логистическая регрессия

Несмотря на присутствующее в названии данного метода слово «регрессия», цель данного алгоритма не восстановление значений или предсказание. Алгоритм применяется в случае, если необходимо решить задачу классификации. В случае логистической регрессии речь идет о задаче бинарной классификации, то есть отнесении объектов к классу «негативных» или «позитивных», вследствие чего набор обучающих примеров построен таким образом, что y ? {0,1}.

Тут будет реклама 3

В этом случае от функции гипотезы требуется выполнение условия 0 ?h

(x) ?1, что достигается применением сигмоидальной (логистической) функции:

Где ? – вектор параметров.

Можно записать также

где n – число параметров (свойств или признаков) объектов; g(z) – сигмоидальная или логистическая функция.

В сокращенном виде h

(x) = g(?

x).

Отметим, что сигмоидальная функция широко применяется и в нейронных сетях в качестве активационной функции нейронов, поскольку является непрерывно дифференцируемой и тем самым гарантирует сходимость алгоритмов обучения нейронной сети.

Тут будет реклама 4
Примерный вид сигмоиды показан в разделе «Активационные функции».

Функция h

(x) может рассматриваться как вероятность того, что объект является «позитивным» (h

(x)?0.5) или «негативным» (h

(x)<0.5). В сложных случаях, требующих нелинейной границы разделения, например, в виде окружности (рисунок 2.

Добавить мнение

Ваша оценка

Кликните на изображение чтобы обновить код, если он неразборчив

Мнения

Еще нет комментариев о книге Введение в машинное обучение, и ваше мнение может быть первым и самым ценным! Расскажите о своих впечатлениях, поделитесь мыслями и отзывами. Ваш отзыв поможет другим читателям сделать правильный выбор. Не стесняйтесь делиться своим мнением!

Похожие книги