Главная » Знания и навыки » Введение в машинное обучение (сразу полная версия бесплатно доступна) Равиль Ильгизович Мухамедиев читать онлайн полностью / Библиотека

Введение в машинное обучение

На нашем сайте вы можете читать онлайн «Введение в машинное обучение». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Учебная и научная литература, Учебники и пособия для вузов. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.

Краткое содержание книги Введение в машинное обучение, аннотация автора и описание

Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Введение в машинное обучение. Предисловие указано в том виде, в котором его написал автор (Равиль Ильгизович Мухамедиев) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.

Описание книги

Учебник поможет студентам различных специальностей освоить современные технологии машинного обучения и практически использовать их в работе и научных проектах. В настоящем пособии даются весьма краткие теоретические и относительно подробные практические сведения о применении отдельных алгоритмов классификации и регрессии. Для практического освоения материала достаточно базовых навыков работы с языком Python. При этом освоение возможностей основных библиотек, таких как matplotlib, numpy, pandas, sklearn происходит в процессе решения задач. Используя полученные знания и навыки, студенты смогут решать широкий круг задач классификации, регрессии, анализировать влияние отдельных признаков на работу классификаторов и регрессионных моделей, снижать размерность данных, визуализировать результаты и оценивать качество моделей машинного обучения. Издание рекомендовано УМО РУМС.

Введение в машинное обучение читать онлайн полную книгу - весь текст целиком бесплатно

Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Введение в машинное обучение без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.

Текст книги

Шрифт
Размер шрифта
-
+
Межстрочный интервал

Производная сигмоидальной активационной функции:

Для любого скрытого слоя сети:

В случае сигмоидальной активационной функции:

Рассчитанное значение градиентов ошибки dz

], dz

], … , dz

также сохраняем в кэше.

Шаг 4. Модифицируем веса сети с учетом значения ошибки для всех слоев I ? L:

где i – номер слоя сети; ? – параметр обучения (learning rate) (0 < ? < 1); ?

– матрица весов слоя i; dz

– рассчитанное значение ошибки i-го слоя (точнее говоря, градиент ошибки).

Полу

Тут будет реклама 1
чив измененные значения весов, повторяем шаги 1–4 до достижения некоторого минимального значения ошибки либо заданное количество раз.

Процесс обучения искусственной нейронной сети можно представить в виде следующей схемы (рисунок 2.10):

Рисунок 2.10. Итеративный процесс обучения искусственной нейронной сети

Рассмотрим пошаговый пример расчета прямого распространения сигнала, обратного распространения ошибки и коррекции весов.

Поша

Тут будет реклама 2
говый пример расчета алгоритма обратного распространения ошибки

В этом примере (рисунок 2.11) веса нейронной сети будем обозначать символом w, смещения b. Номер слоя, как и ранее, указываем верхним индексом в квадратных скобках для того, чтобы не путать с индексом обучающего примера, номер нейрона в слое – нижним индексом. Выход нейрона по-прежнему обозначаем символом а.

Рисунок 2.11. Пример нейронной сети с одним скрытым слоем

Входной слой с его входами x для единообразия последующих матричных операций обозначаем как нулевой слой – a

]. В нашем при

Тут будет реклама 3
мере x1 = 0, x2 = 1, тогда a

] = x1 = 0 и a

] = x2 = 1. Смещение (bias) во всех слоях a

= 1.

На вход сети, таким образом, подается вектор [1,0,1], а на выходе сети необходимо получить y=1.

Шаг 1. Прямое прохождение сигнала.

Рассмотрим прямое прохождение сигнала от входа к выходу:

Выход нейронной сети:

Шаг 2. Расчет ошиб

Тут будет реклама 4
ки выходного слоя.

Сеть должна давать значение y

= 1, однако получена величина 0.78139. Ошибка, c которой сеть «предсказывает» наш единственный пример, равна разнице между ожидаемым значением и полученным результатом.

Шаг 3. Обратное распространение ошибки.

Полученную ошибку нужно «распространить обратно» для того, чтобы скорректировать веса сети.

Добавить мнение

Ваша оценка

Кликните на изображение чтобы обновить код, если он неразборчив

Мнения

Еще нет комментариев о книге Введение в машинное обучение, и ваше мнение может быть первым и самым ценным! Расскажите о своих впечатлениях, поделитесь мыслями и отзывами. Ваш отзыв поможет другим читателям сделать правильный выбор. Не стесняйтесь делиться своим мнением!

Похожие книги