Главная » Знания и навыки » Введение в машинное обучение (сразу полная версия бесплатно доступна) Равиль Ильгизович Мухамедиев читать онлайн полностью / Библиотека

Введение в машинное обучение

На нашем сайте вы можете читать онлайн «Введение в машинное обучение». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Учебная и научная литература, Учебники и пособия для вузов. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.

Краткое содержание книги Введение в машинное обучение, аннотация автора и описание

Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Введение в машинное обучение. Предисловие указано в том виде, в котором его написал автор (Равиль Ильгизович Мухамедиев) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.

Описание книги

Учебник поможет студентам различных специальностей освоить современные технологии машинного обучения и практически использовать их в работе и научных проектах. В настоящем пособии даются весьма краткие теоретические и относительно подробные практические сведения о применении отдельных алгоритмов классификации и регрессии. Для практического освоения материала достаточно базовых навыков работы с языком Python. При этом освоение возможностей основных библиотек, таких как matplotlib, numpy, pandas, sklearn происходит в процессе решения задач. Используя полученные знания и навыки, студенты смогут решать широкий круг задач классификации, регрессии, анализировать влияние отдельных признаков на работу классификаторов и регрессионных моделей, снижать размерность данных, визуализировать результаты и оценивать качество моделей машинного обучения. Издание рекомендовано УМО РУМС.

Введение в машинное обучение читать онлайн полную книгу - весь текст целиком бесплатно

Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Введение в машинное обучение без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.

Текст книги

Шрифт
Размер шрифта
-
+
Межстрочный интервал

Для этого рассчитаем градиенты ошибок нейронов скрытого слоя, используя выражение

Получим

Теперь у нас все готово для того, чтобы, используя градиенты ошибок, пересчитать веса нейронной сети.

Шаг 4. Коррекция весов нейронной сети.

Установим для нашего учебного примера большой коэффициент обучения (learning rate) ro = 0.5. Отметим, что в реальных случаях ro редко превышает 0.1. Здесь мы использовали относительно большое значение, чтобы увидеть значимые изменения весов уже на первой итерации.

Тут будет реклама 1

Используем выражение (Eq. 2.18) для расчета измененных весов сети:

для скрытого слоя:

Используя скорректированные значения весов, повторим расчет прямого прохождения сигнала и получим значение ошибки выходного слоя:

Видно, что ошибка стала значительно меньше.

После третьей итерации dz

] = 0.14184

Примечание. Расчет двух итераций алгоритма BPE с применением Python-numpy приведен в MLF_Example_Of_BPE – https://www.

Тут будет реклама 2
dropbox.com/s/tw6zwht3d5pd4zf/MLF_Example_Of_BPE.html?dl=0 (https://www.dropbox.com/s/tw6zwht3d5pd4zf/MLF_Example_Of_BPE.html?dl=0)

Пример, приведенный выше, является иллюстрацией прямого и обратного хода алгоритма так, что каждый обучающий пример и каждый синаптический коэффициент рассчитываются по отдельности. На практике этапы алгоритма для сети из L-слоев реализуются в матричном виде следующим образом:

где W

– матрица весов i-го слоя нейронной сети; X – матрица обучающих примеров размерностью n x m (n – число параметров, m – количество обучающих примеров).

Тут будет реклама 3

Расчет алгоритма градиентного спуска для нейронной сети в матричном виде:

Примечание. Важно отметить, что алгоритм обратного распространения «требует», чтобы начальные значения весов были небольшими случайными величинами. То есть начальная инициализация требует нарушения «симметрии» для того, чтобы нейроны сети изменяли свои веса «индивидуально».

Тут будет реклама 4
Нулевые значения неприемлемы, поскольку градиент ошибки также будет нулевым и веса не будут корректироваться. Большие значения, сравнимые по величине со значениями, подаваемыми на вход сети, приведут к тому, что алгоритм не будет сходиться. Приведенный выше пример начальных значений весов и смещений является исключительно учебным.

Добавить мнение

Ваша оценка

Кликните на изображение чтобы обновить код, если он неразборчив

Мнения

Еще нет комментариев о книге Введение в машинное обучение, и ваше мнение может быть первым и самым ценным! Расскажите о своих впечатлениях, поделитесь мыслями и отзывами. Ваш отзыв поможет другим читателям сделать правильный выбор. Не стесняйтесь делиться своим мнением!

Похожие книги