На нашем сайте вы можете читать онлайн «Введение в машинное обучение». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Учебная и научная литература, Учебники и пособия для вузов. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Введение в машинное обучение

Дата выхода
15 января 2024
Краткое содержание книги Введение в машинное обучение, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Введение в машинное обучение. Предисловие указано в том виде, в котором его написал автор (Равиль Ильгизович Мухамедиев) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Учебник поможет студентам различных специальностей освоить современные технологии машинного обучения и практически использовать их в работе и научных проектах. В настоящем пособии даются весьма краткие теоретические и относительно подробные практические сведения о применении отдельных алгоритмов классификации и регрессии. Для практического освоения материала достаточно базовых навыков работы с языком Python. При этом освоение возможностей основных библиотек, таких как matplotlib, numpy, pandas, sklearn происходит в процессе решения задач. Используя полученные знания и навыки, студенты смогут решать широкий круг задач классификации, регрессии, анализировать влияние отдельных признаков на работу классификаторов и регрессионных моделей, снижать размерность данных, визуализировать результаты и оценивать качество моделей машинного обучения. Издание рекомендовано УМО РУМС.
Введение в машинное обучение читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Введение в машинное обучение без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Выражения, приведеные выше, говорят о том, что на вход сети подаются все обучающие примеры «одновременно» и значения градиентов ошибки рассчитываются сразу для всех примеров. Этот процесс составляет одну эпоху обучения. Batch Gradient Descent – это процесс обучения, когда все обучающие примеры используются одновременно. Нескольких десятков или сотен эпох обычно достаточно для достижения оптимальных значений весов матриц W
].
Однако, когда количество примеров очень велико, примеры разбиваются на группы, которые можно поместить в оперативную память компьютера, и эпоха обучения включает последовательную подачу этих групп.
Stochastic Batch Gradient Descent – когда группа включает лишь один пример, выбираемый случайно из множества обучающих примеров.
Mini Batch Gradient Descent – когда группа включает некоторое количество примеров.
Примечание. Для ускорения обучения рекомендуется подбирать размер группы равный степени двойки – 8, 16, 32, …, 1024 – в идеале так, чтобы пакет примеров мог быть помещен в кэш-память процессора.
При применении современных пакетов машинного обучения программисту не приходится заботиться о выполнении алгоритма BPE. Он реализуется путем выбора того или иного оптимизационного алгоритма (solver).
from sklearn.neural_network import MLPClassifier
clf = MLPClassifier(hidden_layer_sizes = [10, 10], alpha = 5, random_state = 0, solver='lbfgs')
Пример применения MLPClassifier приведен в разделе 2.8 Пример простого классификатора.
2.
Нелинейная активационная функция играет фундаментальную роль в процессе обучения нейронной сети. Именно ее применение позволяет нейронной сети обучаться сложным закономерностям, содержащимся в исходных данных. Кроме уже упомянутой сигмоидальной функции часто используются и несколько других активационных функций (рисунок 2.12), описываемых уравнениями
Рисунок 2.12.





