Главная » Знания и навыки » Введение в машинное обучение (сразу полная версия бесплатно доступна) Равиль Ильгизович Мухамедиев читать онлайн полностью / Библиотека

Введение в машинное обучение

На нашем сайте вы можете читать онлайн «Введение в машинное обучение». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Учебная и научная литература, Учебники и пособия для вузов. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.

Краткое содержание книги Введение в машинное обучение, аннотация автора и описание

Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Введение в машинное обучение. Предисловие указано в том виде, в котором его написал автор (Равиль Ильгизович Мухамедиев) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.

Описание книги

Учебник поможет студентам различных специальностей освоить современные технологии машинного обучения и практически использовать их в работе и научных проектах. В настоящем пособии даются весьма краткие теоретические и относительно подробные практические сведения о применении отдельных алгоритмов классификации и регрессии. Для практического освоения материала достаточно базовых навыков работы с языком Python. При этом освоение возможностей основных библиотек, таких как matplotlib, numpy, pandas, sklearn происходит в процессе решения задач. Используя полученные знания и навыки, студенты смогут решать широкий круг задач классификации, регрессии, анализировать влияние отдельных признаков на работу классификаторов и регрессионных моделей, снижать размерность данных, визуализировать результаты и оценивать качество моделей машинного обучения. Издание рекомендовано УМО РУМС.

Введение в машинное обучение читать онлайн полную книгу - весь текст целиком бесплатно

Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Введение в машинное обучение без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.

Текст книги

Шрифт
Размер шрифта
-
+
Межстрочный интервал

neural_network import MLPClassifier

clf = MLPClassifier(hidden_layer_sizes = [15, 15,],

alpha = 0.01,random_state = 0,

solver='adam').fit(X_train, y_train)

Обучение нейронной сети может занять несколько минут. Затем можно оценить качественные показатели классификатора командами:

predictions=clf.predict(X_test)

print('Accuracy of NN classifier on training set: {:.2f}'

.format(clf.score(X_train, y_train)))

print('Accuracy of NN classifier on test set: {:.2f}'

.format(clf.

Тут будет реклама 1
score(X_test, y_test)))

print(classification_report(y_test,predictions))

matrix = confusion_matrix(y_test, predictions)

print('Confusion matrix on test set\n',matrix)

Значение accuracy может быть примерно следующим:

Accuracy of NN classifier on training set: 0.89

Accuracy of NN classifier on test set: 0.86

Изменяя количество нейронов в слоях сети и параметр регуляризации alpha (например, hidden_layer_sizes = [75, 75], alpha = 0.015), можно несколько улучшить результат:

Accuracy of NN classifier on training set: 0.

Тут будет реклама 2
91

Accuracy of NN classifier on test set: 0.88

Примечание. Программу данного раздела MLF_MLP_Fashion_MNIST_001.ipynb можно получить по ссылке – https://www.dropbox.com/s/ryk05tyxwlhz0m6/MLF_MLP_Fashion_MNIST_001.html?dl=0 (https://www.dropbox.com/s/ryk05tyxwlhz0m6/MLF_MLP_Fashion_MNIST_001.html?dl=0)

2.9. Алгоритм k ближайших соседей (k-Nearest Neighbor – k-NN)

Алгоритм [[58 - Dudani, Sahibsingh A.

Тут будет реклама 3
The Distance-Weighted k-Nearest-Neighbor Rule // Systems, Man, and Cybernetics. – 1976. – Vol. SMC-6. – Issue 4. – P. 325–327.], [59 - K-Nearest Neighbors algorithm. – http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm (http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm) (2012-07-05).]] основан на подсчете количества объектов каждого класса в сфере (гиперсфере) с центром в распознаваемом (классифицируемом) объекте. Классифицируемый объект относят к тому классу, объектов у которого больше всего в этой сфере.
Тут будет реклама 4
В данном методе предполагается, что веса выбраны единичными для всех объектов.

Если веса не одинаковы, то вместо подсчета количества объектов можно суммировать их веса. Таким образом, если в сфере вокруг распознаваемого объекта 10 эталонных объектов класса А весом 2 и 15 ошибочных/пограничных объектов класса Б весом 1, то классифицируемый объект будет отнесен к классу А.

Добавить мнение

Ваша оценка

Кликните на изображение чтобы обновить код, если он неразборчив

Мнения

Еще нет комментариев о книге Введение в машинное обучение, и ваше мнение может быть первым и самым ценным! Расскажите о своих впечатлениях, поделитесь мыслями и отзывами. Ваш отзыв поможет другим читателям сделать правильный выбор. Не стесняйтесь делиться своим мнением!

Похожие книги