На нашем сайте вы можете читать онлайн «Введение в машинное обучение». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Учебная и научная литература, Учебники и пособия для вузов. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Введение в машинное обучение

Дата выхода
15 января 2024
Краткое содержание книги Введение в машинное обучение, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Введение в машинное обучение. Предисловие указано в том виде, в котором его написал автор (Равиль Ильгизович Мухамедиев) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Учебник поможет студентам различных специальностей освоить современные технологии машинного обучения и практически использовать их в работе и научных проектах. В настоящем пособии даются весьма краткие теоретические и относительно подробные практические сведения о применении отдельных алгоритмов классификации и регрессии. Для практического освоения материала достаточно базовых навыков работы с языком Python. При этом освоение возможностей основных библиотек, таких как matplotlib, numpy, pandas, sklearn происходит в процессе решения задач. Используя полученные знания и навыки, студенты смогут решать широкий круг задач классификации, регрессии, анализировать влияние отдельных признаков на работу классификаторов и регрессионных моделей, снижать размерность данных, визуализировать результаты и оценивать качество моделей машинного обучения. Издание рекомендовано УМО РУМС.
Введение в машинное обучение читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Введение в машинное обучение без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
neural_network import MLPClassifier
clf = MLPClassifier(hidden_layer_sizes = [15, 15,],
alpha = 0.01,random_state = 0,
solver='adam').fit(X_train, y_train)
Обучение нейронной сети может занять несколько минут. Затем можно оценить качественные показатели классификатора командами:
predictions=clf.predict(X_test)
print('Accuracy of NN classifier on training set: {:.2f}'
.format(clf.score(X_train, y_train)))
print('Accuracy of NN classifier on test set: {:.2f}'
.format(clf.
print(classification_report(y_test,predictions))
matrix = confusion_matrix(y_test, predictions)
print('Confusion matrix on test set\n',matrix)
Значение accuracy может быть примерно следующим:
Accuracy of NN classifier on training set: 0.89
Accuracy of NN classifier on test set: 0.86
Изменяя количество нейронов в слоях сети и параметр регуляризации alpha (например, hidden_layer_sizes = [75, 75], alpha = 0.015), можно несколько улучшить результат:
Accuracy of NN classifier on training set: 0.
Accuracy of NN classifier on test set: 0.88
Примечание. Программу данного раздела MLF_MLP_Fashion_MNIST_001.ipynb можно получить по ссылке – https://www.dropbox.com/s/ryk05tyxwlhz0m6/MLF_MLP_Fashion_MNIST_001.html?dl=0 (https://www.dropbox.com/s/ryk05tyxwlhz0m6/MLF_MLP_Fashion_MNIST_001.html?dl=0)
2.9. Алгоритм k ближайших соседей (k-Nearest Neighbor – k-NN)
Алгоритм [[58 - Dudani, Sahibsingh A.
Если веса не одинаковы, то вместо подсчета количества объектов можно суммировать их веса. Таким образом, если в сфере вокруг распознаваемого объекта 10 эталонных объектов класса А весом 2 и 15 ошибочных/пограничных объектов класса Б весом 1, то классифицируемый объект будет отнесен к классу А.





