Главная » Знания и навыки » Введение в машинное обучение (сразу полная версия бесплатно доступна) Равиль Ильгизович Мухамедиев читать онлайн полностью / Библиотека

Введение в машинное обучение

На нашем сайте вы можете читать онлайн «Введение в машинное обучение». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Учебная и научная литература, Учебники и пособия для вузов. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.

Краткое содержание книги Введение в машинное обучение, аннотация автора и описание

Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Введение в машинное обучение. Предисловие указано в том виде, в котором его написал автор (Равиль Ильгизович Мухамедиев) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.

Описание книги

Учебник поможет студентам различных специальностей освоить современные технологии машинного обучения и практически использовать их в работе и научных проектах. В настоящем пособии даются весьма краткие теоретические и относительно подробные практические сведения о применении отдельных алгоритмов классификации и регрессии. Для практического освоения материала достаточно базовых навыков работы с языком Python. При этом освоение возможностей основных библиотек, таких как matplotlib, numpy, pandas, sklearn происходит в процессе решения задач. Используя полученные знания и навыки, студенты смогут решать широкий круг задач классификации, регрессии, анализировать влияние отдельных признаков на работу классификаторов и регрессионных моделей, снижать размерность данных, визуализировать результаты и оценивать качество моделей машинного обучения. Издание рекомендовано УМО РУМС.

Введение в машинное обучение читать онлайн полную книгу - весь текст целиком бесплатно

Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Введение в машинное обучение без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.

Текст книги

Шрифт
Размер шрифта
-
+
Межстрочный интервал

Веса объектов в сфере можно представить как обратно пропорциональные расстоянию до распознаваемого объекта. Таким образом, чем ближе объект, тем более значимым он является для данного распознаваемого объекта. Расстояние между классифицируемыми объектами может рассчитываться как расстояние в декартовом пространстве (эвклидова метрика), но можно использовать и другие метрики: манхэттенскую (Manhattan), метрику Чебышева (Chebyshev), Минковского (Minkowski) и др.

В итоге метрический классификатор можно описать так:

где w(i, u) – вес i-го соседа распознаваемого объекта u; a(u;Xl) – класс объекта u, распознанный по выборке Xl.

Тут будет реклама 1

Радиус гиперсферы может быть как фиксированным, так и изменяемым, причем в случае с изменяемым радиусом радиус для каждой точки подбирается так, чтобы количество объектов в каждой сфере было одинаковым. Тогда при распознавании в областях с разной плотностью выборки количество «соседних» объектов (по которым и происходит распознавание) будет одинаковым. Таким образом, исключается ситуация, когда в областях с низкой плотностью не хватает данных для классификации.

Тут будет реклама 2

В целом это один из самых простых, но часто неточных алгоритмов классификации. Алгоритм также отличается высокой вычислительной сложностью. Объем вычислений при использовании эвклидовой метрики пропорционален квадрату от числа обучающих примеров.

Рассмотрим пример.

Загрузка соответствующей библиотеки и создание классификатора выполняются командами:

from sklearn import neighbors

clf = neighbors.

Тут будет реклама 3
KNeighborsClassifier(n_neighbors=5, weights='distance')

Используем уже упомянутый ранее набор данных Fashion-MNIST. Однако в связи с тем, что скорость обучения и особенно классификации KNeighborsClassifier значительно ниже, чем MLP, будем использовать только часть набора: 10 000 примеров для обучения и 2000 для тестирования:

X_train1=X_train1[0:10000,:,:]

y_train=y_train[0:10000]

X_test1=X_test1[0:2000,:,:]

y_test=y_test[0:2000]

Процесс обучения классификатора:

from sklearn.

Тут будет реклама 4
neighbors import KNeighborsClassifier

clf = KNeighborsClassifier(n_neighbors = 5, weights='distance')

clf.fit(X_train, y_train)

Вывод результатов выполняется практически так же, как и в предыдущем примере. Качественные показатели классификатора, примерно следующие:

Accuracy of kNN classifier on training set: 1.00

Accuracy of kNN classifier on test set: 0.82

Примечание. Программу MLF_KNN_Fashion_MNIST_001.

Добавить мнение

Ваша оценка

Кликните на изображение чтобы обновить код, если он неразборчив

Мнения

Еще нет комментариев о книге Введение в машинное обучение, и ваше мнение может быть первым и самым ценным! Расскажите о своих впечатлениях, поделитесь мыслями и отзывами. Ваш отзыв поможет другим читателям сделать правильный выбор. Не стесняйтесь делиться своим мнением!

Похожие книги