На нашем сайте вы можете читать онлайн «Теорема века. Мир с точки зрения математики». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — ---. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Теорема века. Мир с точки зрения математики

Краткое содержание книги Теорема века. Мир с точки зрения математики, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Теорема века. Мир с точки зрения математики. Предисловие указано в том виде, в котором его написал автор (Анри Пуанкаре) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре)
Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!
Теорема века. Мир с точки зрения математики читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Теорема века. Мир с точки зрения математики без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Но это не значит разрешить затруднение; это значит только дать ему название: даже если бы природа синтетических суждений перестала быть для нас тайной, все же противоречие не было бы устранено, оно было бы только отодвинуто; силлогистическое умозаключение неспособно прибавить что-либо к тем данным, которые ему предоставляются; эти данные сводятся к нескольким аксиомам, и, кроме них, ничего нового нельзя было бы найти в заключениях.
Никакая теорема не должна была бы являться новой, если в ее доказательство не входила бы новая аксиома; умозаключение могло бы только возвращать нам истины, непосредственно очевидные, имеющие источником интуицию; оно являлось бы только промежуточным пустословием.
Противоречие поразит нас еще больше, если мы откроем какую-нибудь математическую книгу: на каждой странице автор будет выражать намерение обобщить уже известную теорему.
Наконец, если бы наука о числе была чисто аналитической или могла вытекать аналитически из небольшого числа синтетических суждений, то достаточно сильный ум мог бы, по-видимому, с первого взгляда заметить все содержащиеся в них истины; более того: можно было бы даже надеяться, что когда-нибудь для их выражения будет изобретен язык настолько простой, что эти истины будут непосредственно доступны и заурядному уму.
Если отказаться от допущения этих выводов, то необходимо придется признать, что математическое умозаключение само в себе заключает род творческой силы и что, следовательно, оно отличается от силлогизма.
И отличие это должно быть глубоким. Так, например, мы не найдем ключа к тайне в многократном применении того правила, по которому одна и та же операция, одинаково примененная к двум равным числам, дает тождественные результаты.
Все эти формы умозаключения – все равно, приводимы ли они к силлогизму в собственном смысле или нет, – сохраняют аналитический характер и поэтому являются бессильными.
II
Вопросы этого рода обсуждаются давно. Еще Лейбниц пытался доказать, что 2 да 2 составляют 4; рассмотрим вкратце его доказательство.
Я предполагаю, что определены число 1 и операция x + 1, состоящая в прибавлении 1 к данному числу x.





