На нашем сайте вы можете читать онлайн «Природа и свойства физического времени». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Физика. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Природа и свойства физического времени

Жанр
Дата выхода
07 июня 2023
Краткое содержание книги Природа и свойства физического времени, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Природа и свойства физического времени. Предисловие указано в том виде, в котором его написал автор (Леонид Михайлович Мерцалов) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
В книге описываются природа и свойства физического времени, определённые с помощью анализа законов Ньютона. В ней показано, что в реальности время существует только в виде продолжительности единичного процесса. Подробно исследованы, как свойства собственно времени, так и многочисленные следствия этих свойств.
Природа и свойства физического времени читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Природа и свойства физического времени без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
В целом полученное выше выражение, во-первых, определяет физическое время через известные величины, во-вторых, позволяет понять природу времени, исходя из характеристик самого движения, и, в-третьих, дает возможность сделать некоторые выводы относительно свойств той физической реальности, в которой происходит движение.
Остается неясным, может ли выражение, полученное в результате решения частной задачи динамики, претендовать на какую-либо степень всеобщности. Если время, которое определяется в полученном выражении, действительно то физическое время, о котором речь шла вначале, то и в любом другом случае решение динамических задач всегда должно приводить к аналогичному виду зависимости для времени.
Чтобы убедиться в этом, рассмотрим следующую простую задачу динамики: определить период колебания материальной точки с постоянной массой m по прямой около положения равновесия под действием квазиупругой силы, считая, что в момент времени
точка имеет координату
и скорость
По второму закону Ньютона
положив
получим:
Это дифференциальное уравнение второго порядка, известное как уравнение свободных колебаний материальной точки, общее решение которого имеет вид:
где x – смещение точки из положения равновесия;
a – амплитуда колебания;
? – циклическая частота;
? – начальная фаза.
В нашем случае
Свободные колебания имеют характеристическое время (период), через которое все элементы движения повторяются:
Для простоты картины будем рассматривать период в радианной мере.
Обозначим
Умножим и разделим выражение для T
на x
, по-прежнему учитывая, что
Так как и в этом случае сила действует вдоль направления движения, то
где A – работа силы на пути x, равная изменению потенциальной энергии материальной точки.
так как
Заметим, что потенциальная энергия вкладывается в рассматриваемый процесс лишь в течение половины периода T. Чтобы учесть это, запишем
в виде
в результате получим:
Для окончательной уверенности во всеобщности полученной зависимости решим третью простую задачу динамики, рассмотрев движение физического маятника, колеблющегося вокруг оси.






