На нашем сайте вы можете читать онлайн «Природа и свойства физического времени». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Физика. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Природа и свойства физического времени

Жанр
Дата выхода
07 июня 2023
Краткое содержание книги Природа и свойства физического времени, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Природа и свойства физического времени. Предисловие указано в том виде, в котором его написал автор (Леонид Михайлович Мерцалов) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
В книге описываются природа и свойства физического времени, определённые с помощью анализа законов Ньютона. В ней показано, что в реальности время существует только в виде продолжительности единичного процесса. Подробно исследованы, как свойства собственно времени, так и многочисленные следствия этих свойств.
Природа и свойства физического времени читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Природа и свойства физического времени без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Определим период колебаний тела с постоянным весом P, центр тяжести которого C расположен на расстоянии r от оси вращения. Угол отклонения тела от положения равновесия ? будем считать малым, когда можно принять
Силу тяжести будем считать приложенной к телу в центре тяжести C.
Тогда
при малых углах, где Pt – тангенциальная составляющая веса тела. Момент этой силы по отношению к оси вращения
Под влиянием этого момента тело приобретает угловое ускорение
где J – момент инерции тела относительно оси О.
Подставляя значения ? и M, получим:
Полагая
получим:
Полученное уравнение также является уравнением гармонических колебаний с периодом
или в радианной мере
Подставив в уравнение для T значение ?, найдем:
Умножим числитель и знаменатель выражения на ?
и, учитывая также, что
получим:
Заметим, что
– путь, проходимый центром тяжести при колебаниях.
а
Отсюда
но
Так как и здесь потенциальная энергия вкладывается в процесс только в течение половины периода, запишем:
В итоге получим:
Сопоставим все три выражения, полученные из трех различных задач динамики:
Поскольку в двух последних случаях за время развития процесса потенциальная энергия полностью переходит в кинетическую и обратно, а в первом случае (при торможении) кинетическая может переходить в тепловую, то есть в процессе могут участвовать различные виды энергии, обобщим найденные зависимости, записав:
где E – сторонняя энергия, участвующая в процессе.
Рассмотрим выражение
Присутствие в нем меры инерции точки и квадрата расстояния, которое она проходит под действием приложенной силы, определяет степень противодействия массы m изменению ее в данном случае кинетической энергии.
обобщенным моментом инерции массы m.
Здесь хорошо видно, что масса есть численная характеристика степени противодействия сил инерции работе внешней силы.
В итоге для искомой функции получаем:
где
– временной интервал;
J – обобщенный момент инерции;
E – сторонняя энергия.






