На нашем сайте вы можете читать онлайн «Природа и свойства физического времени». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Физика. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Природа и свойства физического времени

Жанр
Дата выхода
07 июня 2023
Краткое содержание книги Природа и свойства физического времени, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Природа и свойства физического времени. Предисловие указано в том виде, в котором его написал автор (Леонид Михайлович Мерцалов) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
В книге описываются природа и свойства физического времени, определённые с помощью анализа законов Ньютона. В ней показано, что в реальности время существует только в виде продолжительности единичного процесса. Подробно исследованы, как свойства собственно времени, так и многочисленные следствия этих свойств.
Природа и свойства физического времени читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Природа и свойства физического времени без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Или, иными словами, способ упорядочения аргумента выбирается в зависимости от той задачи, которую решают, исследуя функцию.
Так, например, если отношение максимального и минимального значений функции значительно меньше отношения максимального и минимального значений аргумента, то для аргумента выбирают, как правило, логарифмическую шкалу. Точно так же, если функция периодическая, область значений аргумента представляет собой интервал, умножаемый на значения шкалы натуральных целых чисел.
В нашем случае, поскольку множества значений функций, употребляющихся в классической механике, упорядочены, как правило, в виде множеств действительных чисел, то сопоставленные им множества значений аргументов упорядочиваются в каждом отдельном случае, соответственно, как числовые оси или их отрезки, то есть принимают вид линейных точечных множеств.
По той же причине аргумент, упорядоченный в виде числовой оси, будет на всем ее протяжении однородным, так как заданная в любом месте длина ее отрезка не меняется от перемещения его вдоль оси.
Кроме того, одной из важнейших процедур в задачах динамики является операция дифференцирования по времени, а ее производные – скорость и ускорение – чаще других употребляются в этих задачах. Но для выполнения дифференцирования аргумент, по которому оно выполняется, должен быть непрерывным на всем отрезке дифференцирования, так как исключение даже бесконечно малой окрестности любой точки на этом отрезке, не говоря уже о самой точке, может привести к потере неизвестных заранее особенностей (разрывов, особых точек, максимумов и т.
Таким образом, непрерывность, равномерность и однородность абсолютного времени имеют свое основание как в нашем восприятии действительности, так и в особенностях научной методики, используемой в классической механике.
Перейдем теперь к временному интервалу, выраженному полученной нами зависимостью, и проанализируем эту зависимость с точки зрения непрерывности, равномерности и однородности. Из вида зависимости непосредственно ясно, что никаких ограничений подобного рода на временной интервал не накладывается.






