Главная » Механика » Аппараты с перемешивающими устройствами (сразу полная версия бесплатно доступна) Константин Владимирович Ефанов читать онлайн полностью / Библиотека

Аппараты с перемешивающими устройствами

На нашем сайте вы можете читать онлайн «Аппараты с перемешивающими устройствами». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Механика. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.

0 баллов
0 мнений
1 чтение

Жанр

Механика

Дата выхода

22 июля 2019

Краткое содержание книги Аппараты с перемешивающими устройствами, аннотация автора и описание

Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Аппараты с перемешивающими устройствами. Предисловие указано в том виде, в котором его написал автор (Константин Владимирович Ефанов) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.

Описание книги

Монография написана по проблемам проектирования химических, нефтяных и атомных аппаратов с перемешивающими устройствами. Подробно рассмотрен расчет вала на резонанс вручную по теории колебаний и теория расчета на компьютере.

Аппараты с перемешивающими устройствами читать онлайн полную книгу - весь текст целиком бесплатно

Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Аппараты с перемешивающими устройствами без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.

Текст книги

Шрифт
Размер шрифта
-
+
Межстрочный интервал

В результате получается запись:

Для кинетическая энергия системы

находится производная по обобщенным координате и скорости и после преобразований:

Уравнение движения запишется в виде

Силы, действующие на вал, зависят только от положения и не зависят от времени, скорости. В этом случае, согласно теоремы Кастильяно, обобщенная сила равна производной потенциальной энергии (при этом совершаемая работа переводит потенциальную энергию в кинетическую):

По теореме Кастильяно [5,с.

Тут будет реклама 1
319] прогиб точки приложения сосредоточенной силы (P) равен частной производной потенциальной энергии деформации по этой силе, а производная потенциальной энергии деформации по обобщенной силе равна обобщенному перемещению:

В результате получается уравнение движения Лагранжа:

__

Равновесное положение системы вала принимается за начало обобщенных координат, т. е.

Кинетическая и потенциальная энергии системы:

-

коэффициенты инерции,

– коэффициенты жесткости.

Тут будет реклама 2

Существует форма записи обобщенного закона Гука [5,с.314], связывающая все силы и перемещения:

В условиях равновесия:

С учетом этого, уравнение Лагранжа можно записать в виде системы линейных однородных дифференциальных уравнений второго порядка с постоянными коэффициентами:

Частными решениями уравнений системы будут уравнения:

В частных решениях (j = 0, 1,2,3…s):

Частным решениям соответсвуют резонансные частоты колебаний.

Тут будет реклама 3

Для неизвестных

получают систему линейных однородных уравнений подстановкой полученного частного решения в приведенную систему уравнений (основные уравнения система малых колебаний с s степенями свободы):

Полученная система уравнений имеет решение, отличное от нуля в случае равенства нулю определителя этой системы.

На этом основании записывается вековое уравнение (уравнение частот).

Тут будет реклама 4
Вековое уравнение является уравнением s-степени относительно:

Искомые частота колебаний р и амплитуды ?, возникающие при этой частоте (k = 1,2,3…n), находятся из:

– основных уравнений системымалых колебаний с s степенями свободы,

– векового уравнения.

Вековое уравнение является уравнением s степени относительно k

. И из этого уравнения находятся все частоты свободных колебаний k системы.

Добавить мнение

Ваша оценка

Кликните на изображение чтобы обновить код, если он неразборчив

Мнения

Еще нет комментариев о книге Аппараты с перемешивающими устройствами, и ваше мнение может быть первым и самым ценным! Расскажите о своих впечатлениях, поделитесь мыслями и отзывами. Ваш отзыв поможет другим читателям сделать правильный выбор. Не стесняйтесь делиться своим мнением!

Другие книги автора

Понравилась эта книга? Познакомьтесь с другими произведениями автора Константин Владимирович Ефанов! В этом разделе мы собрали для вас другие книги, написанные вашим любимым писателем.

Похожие книги