На нашем сайте вы можете читать онлайн «PANN: Новая Технология Искусственного Интеллекта. Учебное пособие». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Компьютерная литература, Книги о компьютерах. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
PANN: Новая Технология Искусственного Интеллекта. Учебное пособие

Автор
Дата выхода
23 апреля 2024
Краткое содержание книги PANN: Новая Технология Искусственного Интеллекта. Учебное пособие, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению PANN: Новая Технология Искусственного Интеллекта. Учебное пособие. Предисловие указано в том виде, в котором его написал автор (Борис Злотин) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Американская компания Progress Inc разработала, протестировала и запатентовала принципиально новый вид нейронных сетей, названный PANN (Progress Artificial Neural Network), и основанный на них Искусственный Интеллект. В материале описываются научно-технические основы PANN, софтвер Matrix_PANN и его функционал, практика его применения. Компания может предоставить дистрибутив программы для тестирования, материалы для обучения пользованию. Также есть возможность увидеть демонстрацию работы софта.
PANN: Новая Технология Искусственного Интеллекта. Учебное пособие читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу PANN: Новая Технология Искусственного Интеллекта. Учебное пособие без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
А разница в одну десятую говорит уже о вполне серьезном различии и высокой устойчивости распознавания, малой зависимости распознавания от шумов.
В отличие от классических нейронных сетей, сети PANN позволяют резко повысить качество распознавания за счет:
• статистической обработки распознавания по классам и по имиджам;
• совмещения распознавания по классам и распознавания непосредственно по имиджам. Причем совмещенное распознавание по классам и по имиджам позволяет решить одну из самых неприятных проблем, ограничивающих применение нейронных сетей в медицине и ряде других приложений – проблему прозрачности и объяснимости результатов работы сети.
2.4.3. Оценка достоверности и точности распознавания
Достоверность и точность распознавания имиджей нейронными сетями крайне важны для их использования.
Точность и надежность распознавания классической нейронной сети определяется путем тестирование нескольких десятков, сотен или тысяч имиджей и подсчета числа правильных и неправильных распознаваний.
• иногда результаты обучения плохо воспроизводятся, одна и та же сеть, обученная на одних и тех же имиджах, в одних случаях будет распознавать лучше, в других хуже;
• нет способов адекватной оценки точности и надежности распознавания по каждому из имиджей;
• влияние отбора тестовых имиджей.
Распознавание сетью PANN оценивается по числовому коэффициенту сходства рассматриваемого имиджа:
1. С любым набором загруженных в сеть отдельных имиджей.
2. Со всеми классами, которым обучена данная сеть.
При этом и классы, и отдельные имиджи ранжируются по степени сходства, что позволяет точно оценить величину различий между всеми сравниваемыми классами и тем самым оценить точность и надежность распознавания.
Безусловно, возможно формально (с точки зрения машины) правильное, но не устраивающее нас распознавание. Даже люди нередко распознают других людей не по главным, а по второстепенным признакам. Например, оценивая сходство не по чертам лица, а по одежде. Бывает, что при распознавании человеческих лиц особенности освещения оказываются более весомыми, чем черты лица.






