На нашем сайте вы можете читать онлайн «PANN: Новая Технология Искусственного Интеллекта. Учебное пособие». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Компьютерная литература, Книги о компьютерах. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
PANN: Новая Технология Искусственного Интеллекта. Учебное пособие

Автор
Дата выхода
23 апреля 2024
Краткое содержание книги PANN: Новая Технология Искусственного Интеллекта. Учебное пособие, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению PANN: Новая Технология Искусственного Интеллекта. Учебное пособие. Предисловие указано в том виде, в котором его написал автор (Борис Злотин) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Американская компания Progress Inc разработала, протестировала и запатентовала принципиально новый вид нейронных сетей, названный PANN (Progress Artificial Neural Network), и основанный на них Искусственный Интеллект. В материале описываются научно-технические основы PANN, софтвер Matrix_PANN и его функционал, практика его применения. Компания может предоставить дистрибутив программы для тестирования, материалы для обучения пользованию. Также есть возможность увидеть демонстрацию работы софта.
PANN: Новая Технология Искусственного Интеллекта. Учебное пособие читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу PANN: Новая Технология Искусственного Интеллекта. Учебное пособие без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Массивы типа X в формате BCF обозначаются как матрицы |X|.
2.4.2. Сравнение числовых массивов
Сравнение объектов, или определение сходства и различия.
Определение сходства тех или иных объектов путем их сравнения играет огромную роль в мышлении, позволяет выявлять аналогии и отличия разных объектов – существ, предметов, процессов, идей и т.
Функции сравнения в PANN реализуются через математические операции над матрицами числовых массивов. Рассмотрим простейший алгоритм сравнения через векторное произведение матриц нейронов-имиджей.
Даны два массива для сравнения в виде матриц |X
| и |X
|.
|X
| ? |X
|
– векторное произведение матрицы |X
| на транспонированную матрицу |X
|.
| и |X
|.
|X
| ? |X
|
= N, только если |X
| = |X
|;
|X
| ? |X
|
| ? |X
|;
|X
| ? |X
|
= 0, если ни один пиксель этих матриц не совпадает.
Рассмотрим отношение:
Здесь CoS – Коэффициент Сходства между числовыми векторами X
и X
определяет степень близости этих векторов и описываемых этими векторами имиджей.
Примеры:
Рис. 7. Перемножение матриц для сравнения числовых массивов
Рис. 8. Сравнение десятичных числовых массивов |A| и |B|
Классические нейронные сети при распознавании только определяют, на какой класс более всего похож некоторый распознаваемый объект. При этом они не могут указать, насколько он похож. Из-за этого распознавание иногда неустойчиво – существуют известные примеры, когда изменения одного пикселя в имидже оказалось достаточным, чтобы его распознавание изменилось. Это значит, что распознавание в классических сетях сильно зависит от случайных шумов.
В PANN ситуация иная – величина коэффициента сходства очень четко показывает, насколько существенна разница между имиджами. Разница сходства в одну сотую при формате 32 ? 32 пикселя соответствует примерно изменению 10 пикселей. И этого уже достаточно для того, чтобы уверенно отличать имиджи друг от друга.






