На нашем сайте вы можете читать онлайн «Статистический анализ взаимосвязи. Учебное пособие». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Словари, справочники, Руководства. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Статистический анализ взаимосвязи. Учебное пособие

Автор
Дата выхода
25 сентября 2019
Краткое содержание книги Статистический анализ взаимосвязи. Учебное пособие, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Статистический анализ взаимосвязи. Учебное пособие. Предисловие указано в том виде, в котором его написал автор (Валентин Юльевич Арьков) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Рассматриваются такие инструменты статистического анализа взаимосвязи, как корреляционный и регрессионный анализ. Техника работы в электронных таблицах изучается на примере смоделированных данных. Затем полученные навыки применяются к анализу реальных данных по ценам в интернет-магазине и биржевым котировкам.
Статистический анализ взаимосвязи. Учебное пособие читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Статистический анализ взаимосвязи. Учебное пособие без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Сигма Е тоже будет равна единице, потому что сигма – это квадратный корень из дисперсии. Если умножить случайную величину Е на 50, то её сигма тоже увечивается в 50 раз. Стало быть, сигма равна 50, а три сигмы равно
3 · 50 = 150.
Вокруг первой и последней точек на графике строим разброс «плюс-минус три сигмы».
2050 – 150 = 1900
2050 +150 = 2200
2700 – 150 = 2550
2700 +150 = 2850
Проводим пунктиром две параллельные линии. Это будут границы случайного разброса.
Заполняем эту «полосу» точками – случайным образом.
Вот что мы ожидаем увидеть, когда смоделируем исходные данные – см. рисунок.
Зарисовка
Зачем в этой работе мы делаем зарисовку? При любых вычислениях нужно уметь ЗАРАНЕЕ ОЦЕНИВАТЬ и МЫСЛЕННО ПРЕДСТАВЛЯТЬ себе будущие результаты. Тогда сразу будут видны ГРУБЫЕ ОШИБКИ. И эти ошибки можно будет сразу же выявить и исправить. Ну а ошибки будут всегда.
Если не оценивать будущий результат, то можно легко сказать: «Это компьютер так посчитал». Проблема в том, что исходные данные вводит человек и результаты будет использовать тоже человек.
Зарисовка нелинейной функции
Вторая часть задания – это нелинейная функция второго порядка. Варианты заданий приводятся в таблице. Другие названия: квадратичная функция, парабола – см. формулу.
Уравнение параболы можно записать разными способами, поэтому нужно следить за тем, в каком порядке расположены члены уравнения.
Уравнение параболы
В первом примере степени аргумента расположены по убыванию. Во втором – по возрастанию. Как записать уравнение – не так важно. Главное – правильно прочитать те результаты, которые нам выдаст программа.
На новом листе отчёта опишем свой вариант задания. Напомним, что мы в качестве примера рассматриваем нулевой вариант.
Пределы изменения факторного признака: от 1000 до 3000.
Уравнение функции:
y = 7000 – 7 · x +0,002 · x
+200 · e
Коэффициенты уравнения:
a
= 7000
a
= – 7
a
= 0,002
s = 200
Коэффициент при случайной составляющей E обозначим буквой S, поскольку он определяет значение «сигмы».
Чтобы сделать зарисовку параболы, нужно определить два основных момента.
Вначале определим знак старшего коэффициента при второй степени фактора a
. Если коэффициент a
положителен, то ветви параболы напрaвлены вверх.











