На нашем сайте вы можете читать онлайн «Python Библиотеки». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Компьютерная литература, Программирование. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Python Библиотеки

Автор
Дата выхода
05 февраля 2024
Краткое содержание книги Python Библиотеки, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Python Библиотеки. Предисловие указано в том виде, в котором его написал автор (Джейд Картер) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Книга представляет собой обзор богатой экосистемы библиотек, доступных в языке программирования Python, начиная от основных инструментов для работы с данными и машинного обучения, и заканчивая инструментами для создания веб-приложений, обработки изображений и разработки игр. Основные темы включают в себя введение в библиотеки для анализа данных, такие как NumPy, Pandas, и Matplotlib, а также обсуждение алгоритмов машинного обучения с использованием Scikit-learn. Автор также рассматривает инструменты для работы с веб-технологиями, такие как Flask, Django, и для визуализации данных, такие как Seaborn, Plotly, и Bokeh. Книга охватывает обширный спектр примеров использования каждой библиотеки, предоставляя читателю практический опыт и навыки, необходимые для успешной разработки с использованием Python. Она подходит как для новичков, только начинающих изучать Python, так и для опытных разработчиков, ищущих лучшие инструменты для конкретных задач.
Python Библиотеки читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Python Библиотеки без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
pyplot as plt
import numpy as np
# Создаем данные для тепловой карты
data = np.random.random((10, 10))
# Список цветовых карт для использования
colormaps = ['viridis', 'plasma', 'magma', 'inferno', 'cividis']
# Создаем подграфики для каждой цветовой карты
fig, axes = plt.subplots(1, len(colormaps), figsize=(15, 3))
# Строим тепловую карту для каждой цветовой карты
for i, cmap in enumerate(colormaps):
im = axes[i].imshow(data, cmap=cmap)
axes[i].set_title(f'Цветовая карта: {cmap}')
fig.
# Регулируем расположение графиков
plt.tight_layout()
# Показываем графики
plt.show()
```
В этом примере:
– Мы создаем случайные данные для тепловой карты с использованием NumPy.
– Затем мы строим тепловые карты для различных цветовых карт (`viridis`, `plasma`, `magma`, `inferno`, `cividis`).
– Для каждой цветовой карты добавляем шкалу цветов.
Этот пример демонстрирует разнообразие цветовых карт в Matplotlib, отличающихся как по цветовому спектру, так и по контрасту. Выбор подходящей цветовой карты может улучшить восприятие данных на графиках.
В Matplotlib существует множество цветовых карт. Вы можете получить актуальный список цветовых карт, вызвав функцию `plt.colormaps()`.
Практическое задание
Задача: Мониторинг изменений температуры на глобальной карте
Описание:
Вам предоставлены данные о температуре в различных регионах мира за последние несколько лет.
1. Подготовка данных:
– Загрузите данные о температуре в различных регионах мира. Данные могут включать временные метки, широту, долготу и значения температуры.
2. Выбор Цветовой Карты:
– Выберите цветовую карту, которая лучше всего подходит для отображения изменений температуры.
3. Построение Глобальной Карты:
– Используя библиотеку Matplotlib, постройте глобальную карту, на которой цветами будет представлена температура в различных регионах. Широта и долгота могут быть представлены на осях X и Y, а цветом можно отображать температурные значения.
4.











