Главная » Знания и навыки » Искусственный интеллект и Машинное обучение. Основы программирования на Python (сразу полная версия бесплатно доступна) Тимур Казанцев читать онлайн полностью / Библиотека

Искусственный интеллект и Машинное обучение. Основы программирования на Python

На нашем сайте вы можете читать онлайн «Искусственный интеллект и Машинное обучение. Основы программирования на Python». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Компьютерная литература, Программирование. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.

0 баллов
0 мнений
0 чтений

Дата выхода

18 сентября 2020

Краткое содержание книги Искусственный интеллект и Машинное обучение. Основы программирования на Python, аннотация автора и описание

Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Искусственный интеллект и Машинное обучение. Основы программирования на Python. Предисловие указано в том виде, в котором его написал автор (Тимур Казанцев) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.

Описание книги

В этой книге мы расскажем вам об основных понятиях Искусственного интеллекта и Машинного обучения. Вы познакомитесь с основными алгоритмами и моделями, использующимися для решения абсолютно разных задач. Мы научимся предсказывать цены на квартиры, ВВП стран, распределим цветы на разные классы и даже построим собственную нейронную сеть, которая сможет предсказывать, что изображено на рисунке.

Для желающих овладеть языком программирования Python, на котором решается большинство задач по машинному обучению, мы пройдем основы программирования на этом языке и научимся использовать его для построения моделей машинного и глубокого обучения.

Искусственный интеллект и Машинное обучение. Основы программирования на Python читать онлайн полную книгу - весь текст целиком бесплатно

Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Искусственный интеллект и Машинное обучение. Основы программирования на Python без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.

Текст книги

Шрифт
Размер шрифта
-
+
Межстрочный интервал

Таким образом, если суммировать, то в обучении с учителем – ключевая фраза – это labeled data или помеченные данные. То есть мы загружаем в нашу модель данные с ответами, будь то класс, к которому принадлежит тот или иной объект или реальная цена квартиры в зависимости от площади. На основе этой информации модель учится и создает алгоритм, который может делать прогнозы.

Идем дальше. Второй вид машинного обучения – это обучение без учителя. Это когда мы позволяем нашей модели обучаться самостоятельно и находить информацию, которая может быть не видна очевидно для человека.

В отличие от обучения с учителем, модели, которые используются в обучении без учителя, выводят закономерности и выводы на основе немаркированных данных (или unlabeled data). Помните, у нас был пример с цветками ириса. Так вот в данных, которые мы давали компьютеру, присутствовали ответы какой вид ириса мы имеем в зависимости от тех или иных размеров лепестка и чашелистника.

А в немаркированных данных, у нас имеются данные и признаки, но мы не имеем ответа к какому виду или классу они относятся. Поэтому такие данные называются немаркированные.

В обучении без учителя основными типами задач являются Кластеризация и снижение размерности. Если в двух словах, то снижение размерности означает, что мы удаляем ненужные или излишние признаки из наших данных, чтобы облегчить классификацию наших данных и сделать ее более понятной для интерпретации.

Давайте рассмотрим пример кластеризации.

В задачах кластеризации у нас имеется набор объектов и нам надо выявить его внутреннюю структуру. То есть нам надо найти группы объектов внутри этого набора, которые наиболее похожи между собой, и отличаются от других групп объектов из этого же набора. Например, разобрать все движущиеся средства по категориям, например, все средства, похожие на велосипед, в одну группу или кластер, а похожие на автобус – в отдельную группу.

Причем, мы не говорим компьютеру, что чем является, он должен самостоятельно найти схожие признаки и определить похожие объекты в ту или иную группу. Поэтому это и называется обучение без учителя, потому что мы не говорим изначально компьютеру к какой группе принадлежат те или иные объекты.

Такие задачи бывают очень полезны для крупных ритейлеров, если они, например, хотят понять из кого состоят их клиенты.

Добавить мнение

Ваша оценка

Кликните на изображение чтобы обновить код, если он неразборчив

Мнения

Еще нет комментариев о книге Искусственный интеллект и Машинное обучение. Основы программирования на Python, и ваше мнение может быть первым и самым ценным! Расскажите о своих впечатлениях, поделитесь мыслями и отзывами. Ваш отзыв поможет другим читателям сделать правильный выбор. Не стесняйтесь делиться своим мнением!

Другие книги автора

Понравилась эта книга? Познакомьтесь с другими произведениями автора Тимур Казанцев! В этом разделе мы собрали для вас другие книги, написанные вашим любимым писателем.

Похожие книги