Главная » Знания и навыки » Искусственный интеллект и Машинное обучение. Основы программирования на Python (сразу полная версия бесплатно доступна) Тимур Казанцев читать онлайн полностью / Библиотека

Искусственный интеллект и Машинное обучение. Основы программирования на Python

На нашем сайте вы можете читать онлайн «Искусственный интеллект и Машинное обучение. Основы программирования на Python». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Компьютерная литература, Программирование. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.

0 баллов
0 мнений
0 чтений

Дата выхода

18 сентября 2020

Краткое содержание книги Искусственный интеллект и Машинное обучение. Основы программирования на Python, аннотация автора и описание

Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Искусственный интеллект и Машинное обучение. Основы программирования на Python. Предисловие указано в том виде, в котором его написал автор (Тимур Казанцев) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.

Описание книги

В этой книге мы расскажем вам об основных понятиях Искусственного интеллекта и Машинного обучения. Вы познакомитесь с основными алгоритмами и моделями, использующимися для решения абсолютно разных задач. Мы научимся предсказывать цены на квартиры, ВВП стран, распределим цветы на разные классы и даже построим собственную нейронную сеть, которая сможет предсказывать, что изображено на рисунке.

Для желающих овладеть языком программирования Python, на котором решается большинство задач по машинному обучению, мы пройдем основы программирования на этом языке и научимся использовать его для построения моделей машинного и глубокого обучения.

Искусственный интеллект и Машинное обучение. Основы программирования на Python читать онлайн полную книгу - весь текст целиком бесплатно

Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Искусственный интеллект и Машинное обучение. Основы программирования на Python без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.

Текст книги

Шрифт
Размер шрифта
-
+
Межстрочный интервал

Предположим, есть крупный гипермаркет, и чтобы делать точечные рекламные акции для своих потребителей, ему необходимо будет разбить их по группам или кластерам. И если сейчас акция на спортивные товары, то отправлять информацию об этой акции не всем подряд потребителям, а только тем, кто в прошлом уже покупали спортивные товары.

Таким образом, основная разница между обучением с учителем и обучением без учителя, это то, что в обучении с учителем мы используем маркированные данные, где каждый объект помечен и относится к тому или иному классу или имеет конкретное числовое значение.

И на основе этих помеченных данных наша модель строит алгоритм, который помогает нам прогнозировать результаты при новых данных. А в обучении без учителя, имеющиеся у нас данные непромаркированы, и компьютер самостоятельно выводит определенные закономерности и общие признаки и разделяет все объекты на разные группы, схожие внутри одной группы и отличающиеся от объектов в других группах.

Основные задачи обучения с учителем разделяются на два типа: Классификация, когда мы разделяем наши данные на классы, и Регрессия, когда мы делаем численный прогноз на основе предыдущих данных.

Основные задачи обучения без учителя включают в себя кластеризацию, когда компьютер делит наши данные на группы или кластеры. И снижение размерности, которое необходимо для более удобной демонстрации больших объемов данных.

Указанные задачи мы рассмотрим более подробно в следующих главах.

Регрессия

Итак, одной из самых популярных задач машинного обучения является регрессия.

Это задача определить какую-то величину в цифрах (например, вес человека, стоимость квартиры, объем продаж) используя известную информацию (рост, площадь, удаленность от метро, сезонность).

Давайте возьмем пример с предсказанием стоимости квартиры в зависимости от площади. Для любой задачи машинного обучения нужны данные, и чем больше, тем лучше. Так вот, представим, что у нас есть табличка с данными, в одном столбце площадь квартиры, в другом цена этой квартиры.

Мы располагаем эти данные на графике и в принципе можем заметить, что тут имеется определенная линейная зависимость, которая достаточно очевидна, что чем больше площадь, тем выше стоимость квартиры. Понятное дело, что на стоимость квартиры будет влиять намного больше факторов, как например, удаленность от центра города и от метро, этажность, возраст дома и т.д. Но для упрощения, возьмем всего один признак – площадь квартиры.

Добавить мнение

Ваша оценка

Кликните на изображение чтобы обновить код, если он неразборчив

Мнения

Еще нет комментариев о книге Искусственный интеллект и Машинное обучение. Основы программирования на Python, и ваше мнение может быть первым и самым ценным! Расскажите о своих впечатлениях, поделитесь мыслями и отзывами. Ваш отзыв поможет другим читателям сделать правильный выбор. Не стесняйтесь делиться своим мнением!

Другие книги автора

Понравилась эта книга? Познакомьтесь с другими произведениями автора Тимур Казанцев! В этом разделе мы собрали для вас другие книги, написанные вашим любимым писателем.

Похожие книги