На нашем сайте вы можете читать онлайн «Методика преподавания математики в начальной школе». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Научно-популярная литература. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Методика преподавания математики в начальной школе

Дата выхода
10 апреля 2022
Краткое содержание книги Методика преподавания математики в начальной школе, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Методика преподавания математики в начальной школе. Предисловие указано в том виде, в котором его написал автор (Teacher.elementary.school) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Несколько лекций по методике преподавания математики составленные лучшими преподавателями.
Методика преподавания математики в начальной школе читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Методика преподавания математики в начальной школе без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
2) При ознакомлении учащихся с переместительным (коммутативным) свойством умножения создается проблемная ситуация, в процессе разрешения которой учащиеся самостоятельно формулируют свойство:
На сколько квадратов разделен каждый прямоугольник? Посчитай разными способами. Объясни свои действия.
Учащиеся с помощью системы вопросов учителя предлагают по два способа вычисления к каждому из рисунков:
4 ? 3 = 3 ? 4 9 ? 3 = 3 ? 9.
Затем учащиеся делают вывод: для всех натуральных чисел верно равенство
а ? в = в ? а.
В данном умозаключении посылками являются два равенства. В них утверждается, что для конкретных натуральных чисел выполняется переместительное свойство. Заключением же в этом случае является утверждение общего характера – от перестановки множителей значение произведения не изменяется.
3) При ознакомлении младших школьников со случаями деления на однозначное число, дети должны уяснить, что деление связано с умножением. А следовательно, чтобы найти значение выражения, например 56 : 7, нужно знать табличные случаи умножения числа 7.
«Мы знаем, что 7 ? 8 = 56. Если произведение разделить на один из множителей, получится другой множитель. Следовательно, 56 : 7 = 8».
Таким же образом, учащиеся рассуждают, находя результат в случаях 27 : 9, 36 : 6 и т.д.
Рассмотрев эти случаи, мы видим, что умозаключения бывают разными. В логике рассмотренные нами называют дедуктивными.
Дедуктивными называют умозаключения, в которых посылки и заключения находятся в отношении логического следования.
Посылки дедуктивного следования обозначают так – А1 , А2 , …, Аn , а заключение буквой В. Схематично само умозаключение можно представить так: А1, А2, …, Аn => В. Часто используют и такую запись:
А1 , А2 , …, Аn .
В
В ней черта обозначает слово «следовательно».
В дедуктивном умозаключении при истинности посылок, истинно и заключение.
Во втором случае рассматриваются две посылки частного характера, показывающие, что некоторые натуральные числа обладают переместительным свойством при выполнении умножения.
Неполная индукция – умозаключение, в котором на основании того, что некоторые объекты класса обладают определенным свойством, делают вывод, что этим свойством обладают все объекты данного класса.





