На нашем сайте вы можете читать онлайн «Симметричные числа и сильная гипотеза Гольдбаха-Эйлера». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Математика. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Симметричные числа и сильная гипотеза Гольдбаха-Эйлера

Автор
Жанр
Дата выхода
28 апреля 2023
Краткое содержание книги Симметричные числа и сильная гипотеза Гольдбаха-Эйлера, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Симметричные числа и сильная гипотеза Гольдбаха-Эйлера. Предисловие указано в том виде, в котором его написал автор (Николай Иванович Конон) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
В книге исследуются свойства симметричных чисел натурального ряда. На основе указанных свойств показан путь решения гипотезы Гольдбаха-Эйлера. Доказывается несколько теорем, которые позволяют решить проблему Гольдбаха-Эйлера.
Симметричные числа и сильная гипотеза Гольдбаха-Эйлера читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Симметричные числа и сильная гипотеза Гольдбаха-Эйлера без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
3) следует, что сумма симметричной пары чисел a и b является четным числом и равна
a + b = 2n. (1.5)
6) Из выражения (1.3) также следует, что разность пары чисел a и b также является четным числом и равна
b – a = 2?. (1.6)
Назовем эту разность (1.6) размахом симметричной пары.
7) Из выражения (1.6) вытекает
? =(b – a)/2. (1.7)
8) Можно утверждать, и это очевидно, что количество симметричных пар a и b на числовой оси равно значению n.
Важно исследовать следующий вопрос, в каких пределах изменяется числовое расстояние ?.
Для этого обратимся к числовой оси (рис.1) и построим таблицу 1 множеств симметричных пар при разных значениях n.
Таблица 1
Числоn
Симметричная пара чисел {(a, b)} числаn
Числовое расстояние ?
1
{(0,2)}
1
2
{(1,3),(0,4)}
1,2
3
{(2,4),(1,5),(0,6)}
1,2,3
4
{(3,5),(2,6),(1,7),(0,8)}
1,2,3,4
.
……………….
………
n
{(n–1,n+1), (n–2,n+2),……(1, n+n-1), (0, n+n)}
1,2,3,.
где a и b – симметричные пары для числа n.
Очевидно, и исходя из свойств натуральных чисел, что числовое расстояние ?, равное половине размаха симметричной пары (см. 1.7), изменяется от 1 до n, и по значению не больше самого числа n.
Назовем числовое расстояние ? шагом симметричной пары (шагом симметрии), который меняется
? = (1,2,3,……… n). (1.8)
Из свойства 6 и выражения (1.6), очевидно, что размах симметричной пары равен удвоенному значению шага симметрии.
Исходя из данного определения и исследованных выше свойств симметричных пар, сформулируем следующую лемму.
Лемма 1: Любое натуральное число n, начиная с числа 1, имеет симметричные пары в количестве, равном самому значению натурального числа.
Доказательство. Из свойств натуральных чисел N
известно, что они являются арифметической прогрессией, такой при которой любое натуральное число можно записать в виде
n
= n
+ 1, (1.9)
Исходя из вышесказанного в (1.
n
= n
+ ?, (1.10)
где ? число равное 1, 2, 3.….
Тогда можно записать, что и
n
= n
– ?. (1.11)
Отсюда имеем
n
= n
+ ?. (1.12)
Следовательно, из (1.8) и (1.9) получаем
n
– n
= n
– n
= ?. (1.13)
Далее если принять n
= b, n
= a, n
= n, то в новых обозначениях можно записать
n – a = b – n = ?. (1.





