На нашем сайте вы можете читать онлайн «Невероятная теория вероятностей». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Детские книги, Учебная литература. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Невероятная теория вероятностей

Автор
Дата выхода
02 декабря 2021
Краткое содержание книги Невероятная теория вероятностей, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Невероятная теория вероятностей. Предисловие указано в том виде, в котором его написал автор (Дмитрий Кудрец) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
В книге рассказывается об основных законах теории вероятностей, приводятся интересные факты, примеры решения задач и задачи для самостоятельного решения. Книга рекомендована для учащихся и учителей школ, гимназий, лицеев для организации работы на уроке, подготовке к ЕГЭ, а также для самостоятельного изучения материала.
Невероятная теория вероятностей читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Невероятная теория вероятностей без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
– Я тоже надеюсь, – грустно вздохнул Вовка.
Попрощавшись с профессором, Владимир Савельев отправился домой. Разумеется, он не все понял из объяснений Ивана Петровича, но Вовка утешал себя, что это всего лишь первый раз. В дальнейшем, возможно, будет более понятно. И что более всего радовало семиклассника Владимира Савельева, что профессор не оказался обычным занудой, не мучил Вовку кучей задач и зубрежкой никому не понятных определений и формул.
Вероятность событий
Следующее занятие Иван Петрович начал с вопроса:
– Надеюсь, сегодня обошлось без лужи?
– Без лужи, – подтвердил Вовка.
– Прекрасно! Тогда давай вспомним, о чем шла речь в прошлый раз.
– О событиях, – ответил Вовка, – достоверных, невозможных и случайных.
– Хорошо, – Ван Петрович удовлетворенно потер ладони. – А вот тебе задачка для разминки: ты стреляешь из лука по мишени. Какие события здесь можно рассматривать как достоверные, невозможные или случайные?
– Ну… – Вовка задумался. – Если я попадаю в мишень, то это будет достоверным событием.
– Да.
– Если моя стрела угодит в солнце, то это невозможное событие. Так?
– Хороший пример, – согласился Иван Петрович.
– А если я вместо мишени попаду себе в ногу, то это, наверное, случайное событие или я ошибаюсь?
– Если бы ты просто стрелял из лука, – пояснил Иван Петрович, – то это было бы достоверным событием и к тому же очень неприятным. Но мы рассматриваем стрельбу по мишени, поэтому попадание в ногу – это событие случайное, хотя маловероятное.
– Что значит маловероятное? – не понял Вовка.
– Кроме событий, одним из главных понятий теории вероятности является вероятность. Не сомневаюсь, что ты часто слышал это слово. Вероятно, завтра пойдет дождь или это просто невероятно! В математике вероятность дает числовую оценку вероятности того, что произойдет какое-то событие. Вероятность достоверного события оценивается как единица, вероятность невозможного события равна нулю. Хотя не исключено, что и в том и ином случае событие может быть случайным.
– И чему тогда равна его вероятность?
– Вероятность события зависит от числа благоприятных исходов испытания и общего числа испытаний. Вероятность обозначают Р (А), где А – исследуемое событие. В теории вероятностей события принято обозначать латинскими буквами. Так вот вероятность этого события Р (А) =n/m, где n – число благоприятных испытаний или исходов, а m – общее число испытаний.











