Главная » Физика » Путешествие в квантовую механику (сразу полная версия бесплатно доступна) Игорь А. Мерзляков читать онлайн полностью / Библиотека

Путешествие в квантовую механику

На нашем сайте вы можете читать онлайн «Путешествие в квантовую механику». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Физика. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.

0 баллов
0 мнений
0 чтений

Жанр

Физика

Дата выхода

08 февраля 2020

Краткое содержание книги Путешествие в квантовую механику, аннотация автора и описание

Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Путешествие в квантовую механику. Предисловие указано в том виде, в котором его написал автор (Игорь А. Мерзляков) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.

Описание книги

Квантовая физика не может не притягивать своей загадочностью. Предлагаем Вам окунуться в этот удивительный предмет науки. В настоящем исследовании, опираясь на общее аналитическое решение уравнения Шрёдингера, нам предстоит изучить целый ряд явлений и процессов, происходящих на уровне мельчайших взаимодействий. Обобщив положения о волновой функции, мы заглянем за ширму эксперимента с двумя щелями, проанализируем мир атомов и молекул, а также рассмотрим другие вопросы. Пора отправляться в путь!

Путешествие в квантовую механику читать онлайн полную книгу - весь текст целиком бесплатно

Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Путешествие в квантовую механику без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.

Текст книги

Шрифт
Размер шрифта
-
+
Межстрочный интервал

Плотностью вероятности появления частицы в точке с координатами (x,y,z) называют соотношение ?

?

*. Исходя из тождества ограниченности вероятности ?

?

?

?

?

*dxdydz=1, возможно вычислить множитель C

, следовательно:

где n

?N, n

?N, n

?N – величины, с помощью которых можно определить дискретные значения полной энергии квантовой системы, существующей в стационарном состоянии.

Для того чтобы построить модель устойчивого химического соединения, необходимо в качестве потенциальной энергии U

(x,y,z) подставить в тождество (4!) постоянный коэффициент U

(потенциал).

Исходя из закона Кулона, составленного для энергий, возможно, например, определить условия существования неподвижных в пространстве молекулярных или кристаллических структур. Атомы химического соединения будут сохранять свою стабильность до тех пор, пока сумма энергий ?

?

U

, полученная для всех кулоновских взаимодействий, не изменит своего значения.

Последнее окажется минимальным в том случае, когда в квантовой системе будет достигнуто электростатическое равновесие, тогда:

здесь r

 – расстояние между частицами под номерами o и j; q

, q

 – заряды частиц; K – коэффициент пропорциональности.

Волновая функция ? – это комплекснозначная величина, используемая в квантовой механике для описания чистого состояния системы, когда квантово-механические процессы происходят без декогеренции. Волновая функция физического смысла не имеет, но физический смысл приписывается плотности вероятности.

Величину ? возможно представить в виде суммы волновых функций ?

, каждая из которых будет характеризовать то или иное состояние p рассматриваемой квантовой системы.

В следующем параграфе мы получим общее аналитическое решение уравнения Шрёдингера. Опираясь на методику из 4-го раздела, можно описать большинство явлений нерелятивистской квантовой механики, в том числе дать математическое обоснование коллапсу волновой функции.

4. Об аналитическом решении уравнения Шрёдингера в С

В этой главе будет проанализирован новый подход к решению дифференциальных уравнений, который предложил автор данной книги. В качестве примера мы разрешим уравнение Шрёдингера, полученное для 1-й частицы, находящейся в декартовой системе координат. Исследуемое дифференциальное уравнение возможно представить в виде тождества:

где a=h

/ (2M).

Добавить мнение

Ваша оценка

Кликните на изображение чтобы обновить код, если он неразборчив

Мнения

Еще нет комментариев о книге Путешествие в квантовую механику, и ваше мнение может быть первым и самым ценным! Расскажите о своих впечатлениях, поделитесь мыслями и отзывами. Ваш отзыв поможет другим читателям сделать правильный выбор. Не стесняйтесь делиться своим мнением!

Другие книги автора

Понравилась эта книга? Познакомьтесь с другими произведениями автора Игорь А. Мерзляков! В этом разделе мы собрали для вас другие книги, написанные вашим любимым писателем.

Похожие книги