На нашем сайте вы можете читать онлайн «Технология хранения и обработки больших данных Hadoop». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Компьютерная литература, Интернет. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Технология хранения и обработки больших данных Hadoop

Автор
Дата выхода
10 мая 2021
Краткое содержание книги Технология хранения и обработки больших данных Hadoop, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Технология хранения и обработки больших данных Hadoop. Предисловие указано в том виде, в котором его написал автор (Тимур Машнин) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Apache Hadoop - это платформа для распределенной обработки больших наборов данных на кластерах компьютеров с использованием простых моделей программирования. В этой книге вы познакомитесь с общей архитектурой платформы, компонентами стека, такими как HDFS и MapReduce, приложениями Hadoop.
Технология хранения и обработки больших данных Hadoop читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Технология хранения и обработки больших данных Hadoop без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
И Scoop2 состоит из центрального сервера и тонкого клиента, который вы можете использовать для подключения к серверу.
Ниже, вы можете посмотреть структуру таблицы данных.
Чтобы проанализировать данные транзакций на платформе Cloudera, нам нужно ввести их в распределенную файловую систему Hadoop (HDFS).
И нам нужен инструмент, который легко переносит структурированные данные из реляционной базы данных в HDFS, сохраняя при этом структуру.
И Apache Sqoop является этим инструментом.
С помощью Sqoop мы можем автоматически загружать данные из MySQL в HDFS, сохраняя при этом структуру.
Вверху в меню откроем терминал, и запустим это задание Sqoop.
Эта команда запускает задания MapReduce для экспорта данных из базы данных MySQL и размещения этих файлов экспорта в формате Avro в HDFS.
Эта команда также создает схему Avro, чтобы мы могли легко загрузить таблицы Hive для последующего использования в Impala.
Impala – это механизм аналитических запросов.
И Avro – это формат файлов, оптимизированный для Hadoop.
Таким образом, мы скопируем код и запустим команду в терминале.
После выполнения задания, чтобы подтвердить, что данные существуют в HDFS, мы скопируем следующие команды в терминал.
Которые покажут папку для каждой из таблиц и покажут файлы в папке категорий.
Инструмент Sqoop также должен был создать файлы схемы для этих данных.
И эта команда должна показать avsc схемы для шести таблиц базы данных.
Таким образом, схемы и данные хранятся в отдельных файлах.
И схема применяется к данным, только когда данные запрашиваются.
И это то, что мы называем схемой на чтение.
Это дает гибкость при запросе данных с помощью SQL.
И это отличие от традиционных баз данных, которые требуют, чтобы у вас была четкая схема, прежде чем вводить в базу какие-либо данные. Здесь мы вводим данные, а уже потом применяем к ним схему.
Теперь, так как мы хотим использовать Apache Hive, нам понадобятся файлы схем.
Поэтому с помощью этой команду скопируем их в HDFS, где Hive может легко получить к ним доступ.
Вы могли заметить, что мы импортировали данные в каталоги Hive.
И Hive и Impala читают данные из файла в HDFS, и они даже обмениваются метаданными о таблицах.
Отличие состоит в том, что Hive выполняет запросы, компилируя их в задания MapReduce.











