На нашем сайте вы можете читать онлайн «Глубокое обучение. Погружение в технологию». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Математика. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Глубокое обучение. Погружение в технологию

Автор
Жанр
Дата выхода
02 сентября 2023
Краткое содержание книги Глубокое обучение. Погружение в технологию, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Глубокое обучение. Погружение в технологию. Предисловие указано в том виде, в котором его написал автор (Артем Демиденко) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Глубокое обучение - это увлекательное и быстроразвивающееся поле, которое изменило наше понимание искусственного интеллекта. Эта книга призвана ввести вас в мир глубокого обучения, начиная с основных понятий и методов и заканчивая продвинутыми темами и будущими перспективами этой удивительной области. Наша книга также касается этических и социальных аспектов глубокого обучения, и как оно влияет на наш мир. Мы рассмотрим вызовы и возможности, с которыми сталкиваются исследователи и практики в этой области. Глубокое обучение - это волнующая технология будущего, и мы приглашаем вас присоединиться к этому увлекательному путешествию в мир искусственного интеллекта и глубокого обучения.
Глубокое обучение. Погружение в технологию читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Глубокое обучение. Погружение в технологию без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Когда нейрон активируется, он передает информацию другим нейронам через свой аксон.
4. Ядро: Ядро нейрона – это его ум. Здесь принимаются решения о том, активироваться нейрону или нет.
Нейроны сами по себе интересны, но настоящая магия начинается, когда они объединяются в нейронные сети. Это как объединение множества маленьких ученых в большой научный институт. Нейроны в сети общаются между собой через синапсы, передавая информацию и принимая коллективные решения.
Когда нейрон решает, что пора "подумать" и активироваться, он производит электрический импульс, который передается через синапсы другим нейронам.
Так что, когда вы в следующий раз услышите о нейронах в искусственных нейронных сетях, представьте себе эту фантастическую микро-мирную лабораторию, где магия обработки информации происходит на самом низком уровне. Эти нейроны и их взаимодействие – основа всего глубокого обучения, и именно о них пойдет речь в нашей далее в путешествии.
Сетевая магия: многослойные нейронные сети
Давайте погрузимся глубже в мир нейронных сетей и узнаем, почему многослойные нейронные сети являются ключом к решению сложных задач.
Представьте себе нейронные сети как стройные здания. Нейроны – это кирпичики, из которых они строятся, а слои – это этажи этого здания. Вот почему многослойные нейронные сети иногда называют глубокими нейронными сетями. Чем больше этажей, тем более сложные задачи можно решать.
Магия связей: весовые коэффициенты
Когда вы смотрите на этажи здания, каждый этаж имеет свою роль. Точно так же, каждый слой нейронной сети выполняет определенные операции над данными. Кроме того, каждая связь между нейронами имеет свой весовой коэффициент. Эти веса регулируют, насколько сильно входные данные влияют на активацию нейронов в следующем слое.
Передача сигнала: прямое распространение
Для того чтобы понять, как работает многослойная нейронная сеть, представьте, что вы включили фонарик на первом этаже здания.
Итак, как многослойные нейронные сети решают сложные задачи? Ответ кроется в обучении весовых коэффициентов.











