На нашем сайте вы можете читать онлайн «Глубокое обучение. Погружение в технологию». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Математика. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Глубокое обучение. Погружение в технологию

Автор
Жанр
Дата выхода
02 сентября 2023
Краткое содержание книги Глубокое обучение. Погружение в технологию, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Глубокое обучение. Погружение в технологию. Предисловие указано в том виде, в котором его написал автор (Артем Демиденко) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Глубокое обучение - это увлекательное и быстроразвивающееся поле, которое изменило наше понимание искусственного интеллекта. Эта книга призвана ввести вас в мир глубокого обучения, начиная с основных понятий и методов и заканчивая продвинутыми темами и будущими перспективами этой удивительной области. Наша книга также касается этических и социальных аспектов глубокого обучения, и как оно влияет на наш мир. Мы рассмотрим вызовы и возможности, с которыми сталкиваются исследователи и практики в этой области. Глубокое обучение - это волнующая технология будущего, и мы приглашаем вас присоединиться к этому увлекательному путешествию в мир искусственного интеллекта и глубокого обучения.
Глубокое обучение. Погружение в технологию читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Глубокое обучение. Погружение в технологию без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
В процессе обучения эти веса корректируются таким образом, чтобы минимизировать ошибку в выходных данных сети. Это происходит с использованием алгоритма обратного распространения ошибки, который мы рассмотрим более подробно позже.
Мир многослойных нейронных сетей богат разнообразием архитектур. От полносвязных сетей до свёрточных нейронных сетей (CNN) и рекуррентных нейронных сетей (RNN) – каждая из них имеет свои особенности и применения. CNN, например, отлично подходят для обработки изображений, в то время как RNN применяются для анализа последовательных данных, таких как текст.
Итак, многослойные нейронные сети – это ключ к решению сложных задач, и их архитектуры подобны чудесам современной технологии. Наши исследования только начались, и в следующей главе мы погрузимся еще глубже, изучая, как эти сети обучаются на практике и какие задачи они могут решать.
Тайный рецепт: прямое и обратное распространение
Прямое и обратное распространение – это два ключевых процесса, лежащих в основе обучения нейронных сетей.
Прямое распространение
Воображайте нейронную сеть как сложную машину, которая принимает входные данные, обрабатывает их и выдает результат. Процесс передачи данных от входа к выходу называется прямым распространением (forward propagation).
Итак, давайте посмотрим, как это работает. Представьте, что у нас есть изображение собаки, и мы хотим, чтобы наша нейронная сеть определила, является ли это изображение собакой или нет.
Каждый нейрон в сети связан с предыдущим слоем нейронов. Нейроны в первом слое получают пиксели изображения как входные данные. Они взвешивают эти данные (грубо говоря, они решают, насколько важен каждый пиксель) и передают результат в следующий слой. Этот процесс повторяется для каждого слоя до тех пор, пока мы не получим ответ от последнего слоя – нашу оценку того, является ли изображение собакой.
Процесс прямого распространения – это как волшебство, в котором нейронная сеть обрабатывает информацию и выдает ответ, но волшебство это, конечно же, математика и вычисления.
Обратное распространение
Теперь, когда у нас есть ответ от нашей нейронной сети, как она может учиться? Тут на сцену выходит обратное распространение (backpropagation).











