На нашем сайте вы можете читать онлайн «Data Science для новичков». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Учебная и научная литература, Прочая образовательная литература. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Data Science для новичков

Автор
Дата выхода
12 июля 2023
Краткое содержание книги Data Science для новичков, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Data Science для новичков. Предисловие указано в том виде, в котором его написал автор (Руслан Назаров) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Книга для тех, кто хочет разобраться в искусственном интеллекте, и даже заработать на этом. Основные сведения по статистике, программированию и нейронным сетям. И все это объяснется просто. Дополнительные сведения по языку Python позволят научиться программированию. Книга пригодится всем, кто учится программированию, Data Science, нейронным сетям.
Data Science для новичков читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Data Science для новичков без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Глядя на рисунок выше надо также учитывать, что, как правило, набор данных далеко не отражает всех данных. Например, в данных Goodreads приведена только небольшая выборка из всех книг. Это ставит перед математической статистикой дополнительные задачи.
В качестве учебника по математической статистике я рекомендую учебник Гмурмана «Теория вероятностей и математическая статистика» (далее – Гмурман). Вот как этот автор описывает, чем занимается матстат (стр. 187 Гмурман):
1. «оценка неизвестной вероятности события; оценка неизвестной функции распределения; оценка параметров распределения, вид которого неизвестен; оценка зависимости случайной величины от одной или нескольких случайных величин и др.
2. «проверка статистических гипотез о виде неизвестного распределения или о величине параметров распределения, вид которого неизвестен».
Некоторые важные концепции математической статистики
«Математическим ожиданием дискретной случайной величины называют сумму произведений всех ее возможных значений на их вероятности» (Гмурман, стр.
Математическое ожидание примерно равно среднему значению. Причем «математическое ожидание приближенно равно (тем точнее, чем больше число испытаний) среднему арифметическому наблюдаемых значений случайной величины» (Гмурман, стр. 78). Поэтому – чем больше данных, тем лучше.
Понятие «центрированная величина» возникает из-за того, что такая величина получается как «разность между случайной величиной и ее математическим ожиданием» (Гмурман, стр.
«Дисперсией (рассениянием) дискретной случайной величины называют математическое ожидание квадрата отклонения случайной величины от ее математического ожидания» (Гмурман, стр. 88).
Вот формула:
В этой записи надо учитывать, что прописная X означает весь набор данных, например 3, 8, 19 и т. д. То есть формулу надо читать так, что из каждого из единичных значений X производится вычитание.
Подробнее про компоненты дисперсии можно посмотреть в учебнике для инженеров [7.4.4. What are variance components?] (https://www.itl.nist.gov/div898/handbook/prc/section4/ (https://www.itl.nist.gov/div898/handbook/prc/section4/))
Совет
«В тех случаях, когда желательно, чтобы оценка рассеяния имела размерность случайной величины, вычисляют среднее квадратическое отклонение, а не дисперсию.











