На нашем сайте вы можете читать онлайн «Геометрия простыми словами. 7-й класс. В помощь ученикам, учителям, репетиторам». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Математика. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Геометрия простыми словами. 7-й класс. В помощь ученикам, учителям, репетиторам

Жанр
Дата выхода
26 октября 2018
Краткое содержание книги Геометрия простыми словами. 7-й класс. В помощь ученикам, учителям, репетиторам, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Геометрия простыми словами. 7-й класс. В помощь ученикам, учителям, репетиторам. Предисловие указано в том виде, в котором его написал автор (Игорь Владиславович Казаринов) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Эта книга для тех, кому нужны знания по геометрии, но не нужны длинные и непонятные объяснения и доказательства. Для родителей, которые хотят сами улучшить знания своих детей, но не имеют опыта объяснения предмета. Для учителей и репетиторов, которые хотят получать результаты быстрее и с меньшими затратами сил и нервов. Для тех, кто хочет хорошо сдать ГИА или ЕГЭ, но не знает с чего начать.
Геометрия простыми словами. 7-й класс. В помощь ученикам, учителям, репетиторам читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Геометрия простыми словами. 7-й класс. В помощь ученикам, учителям, репетиторам без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Эта линия состоит из точек и она тоже, как и точка, не имеет толщины. То есть это тоже условность, которая в природе не существует. Потому что никто не сможет назвать хоть что-то, что будет продолжаться в обе стороны до бесконечности и при этом никуда не будет сворачивать. То есть прямая – это условная линия, которую мы изучаем в геометрии, которая используется в геометрии, понятие, с помощью которого мы решаем какие-то задачи. Прямые обозначают двумя способами. Первый – это маленькая латинская буква, написанная рядом с линией прямой – например, «прямая a, прямая b».
Также прямую можно обозначить по двум каким-то точкам, которые на ней находятся. Например, на прямой есть точка K и точка N. Тогда эту прямую можно назвать прямой KN. Также эту прямую можно узнать прямой NK, потому что нет никакой разницы – в каком направлении мы двигаемся по прямой. Прямая в обе стороны бесконечна. (рис.2)
Если я поставлю на этой же прямой третью точку – точку M, то я смогу также эту прямую назвать по двум любым точкам из трёх – прямой NM, прямой MK, прямой MN, или даже любые другие комбинации любых двух точек, принадлежащих этой прямой.
Прямая всегда называется только по двум точкам. Нужно иметь ввиду, что иногда в задачах учеников пытаются немножко запутать и одну и ту же прямую обозначают по-разному – двумя парами разных букв.
Прямые на плоскости могут пересекаться и могут не пересекаться. Прямые, которые не пересекаются называются параллельными (от греческих слов «пара» – рядом, «аллелон» – оба.
Луч
Следующая условная фигура, о которой говорится в геометрии, называется луч. Луч также можно назвать полупрямой, и в некоторых учебниках он так и называется. Если мы поставим точку на прямой (назовём её, например, точка К) и уберём одну половину прямой, которая тянется с одной стороны от точки К до бесконечности, то оставшаяся вторая половина прямой с точкой К и будет называться «луч».









