На нашем сайте вы можете читать онлайн «Справочник по нейронным сетям: от теории к практике». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Компьютерная литература, Программирование. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Справочник по нейронным сетям: от теории к практике

Дата выхода
23 февраля 2023
Краткое содержание книги Справочник по нейронным сетям: от теории к практике, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Справочник по нейронным сетям: от теории к практике. Предисловие указано в том виде, в котором его написал автор (Виталий Александрович Гульчеев) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Вас привлекает мир искусственных нейронных сетей? Это руководство содержит введение в нейронные сети, их построение и применение. Благодаря четким и лаконичным объяснениям вы узнаете об основах нейронных сетей и их роли в машинном обучении. Вы изучите различные типы нейронных сетей, включая сверточные и рекуррентные сети, и узнаете о лучших методах построения, обучения и развертывания моделей. Вы получите практический опыт работы с популярными инструментами и библиотеками, такими как TensorFlow, Keras и PyTorch, а также с созданием веб-приложений с помощью Flask. Если вы начинающий специалист по работе с данными, инженер машинного обучения или исследователь ИИ, это руководство поможет вам освоить основы и продвинуть свои знания и навыки на новый уровень. Содержащая практические примеры, рекомендации по литературе и советы по достижению успеха, эта книга является обязательным ресурсом для всех, кто хочет использовать возможности нейронных сетей для решения реальных задач.
Справочник по нейронным сетям: от теории к практике читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Справочник по нейронным сетям: от теории к практике без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Эти нейроны получают входные данные, выполняют математические операции и передают результаты следующему слою нейронов. Выходы последнего слоя нейронов представляют собой прогнозы, сделанные нейронной сетью.
Типы нейронных сетей
Существует несколько типов нейронных сетей, в том числе:
Нейронные сети с прямой передачей: это самый простой тип нейронных сетей, состоящий из входного слоя, скрытого слоя (слоев) и выходного слоя. Данные проходят через сеть в одном направлении – от входного слоя к выходному.
Конволюционные нейронные сети (CNN): это специализированные нейронные сети, используемые для распознавания и обработки изображений. Они имеют уникальную архитектуру, которая позволяет извлекать особенности из изображений.
Рекуррентные нейронные сети (RNNs): это нейронные сети, предназначенные для обработки последовательных данных, таких как временные ряды или текстовые данные. Они имеют ячейки памяти, которые позволяют им сохранять информацию с предыдущих шагов.
Автоэнкодеры: это неконтролируемые нейронные сети, которые используются для сжатия данных и уменьшения размерности.
Чтобы понять, как работают нейронные сети, рассмотрим простой пример классификации изображений. Предположим, мы хотим классифицировать изображение как кошку или собаку. В этом случае на входной слой нейронной сети будут поступать значения пикселей изображения. Скрытый слой (слои) будет выполнять математические операции над этими значениями, чтобы извлечь признаки из изображения.
В целом, нейронные сети – это мощные алгоритмы для решения сложных проблем путем распознавания закономерностей в данных и составления прогнозов на основе этих закономерностей.
Стоит добавить, что нейронные сети имеют множество применений в различных областях, таких как медицина, финансы, рекомендательные системы и многое другое. Они также используются для создания искусственного интеллекта, который может выполнять сложные задачи, которые раньше мог выполнять только человек.











