На нашем сайте вы можете читать онлайн «Машинное обучение: как его понимать. И как заработать на машинном обучении и искусственном интеллекте». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Учебная и научная литература, Прочая образовательная литература. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Машинное обучение: как его понимать. И как заработать на машинном обучении и искусственном интеллекте

Дата выхода
25 октября 2023
Краткое содержание книги Машинное обучение: как его понимать. И как заработать на машинном обучении и искусственном интеллекте, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Машинное обучение: как его понимать. И как заработать на машинном обучении и искусственном интеллекте. Предисловие указано в том виде, в котором его написал автор (Маргарита Васильевна Акулич) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
В предлагаемой книге с опорой на англоязычные источники рассказано о весьма популярном сегодня направлении — машинном обучении. Раскрыты его определение и ряд аспектов. Помимо этого, даны советы по зарабатыванию на машинном обучении и искусственном интеллекте.
Машинное обучение: как его понимать. И как заработать на машинном обучении и искусственном интеллекте читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Машинное обучение: как его понимать. И как заработать на машинном обучении и искусственном интеллекте без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Но более статистическое направление исследований теперь оказалось за пределами собственно AI, в области распознавания образов и поиска информации. Исследования в сфере нейронных сетей были практически одновременно прекращены информатикой и AI.
Данная линия также была продолжена как «коннекционизм» исследователями в других дисциплинах, которыми являлись (в том числе) Хинтон, Румельхарт и Хопфилд. Их ключевой успех пришелся на время середины 1980-х г.г., когда ими был изобретен метод обратного распространения ошибки.
Примечание:
Коннекционизм является одним из подходов в области искусственного интеллекта, когнитивной науки под названием «когнитивистика», нейробиологии, философии сознания и психологии. Он из связанных между собой простых элементов моделирует поведенческие либо мыслительные явления посредством процессов становления в сетях. .
Расцвет машинного обучения, реорганизованного и признанного отдельной областью, пришелся на 1990-е г. г. Эта область с достижениями в области искусственного интеллекта изменила свою цель на решение решаемых проблем практического характера.
1.3 Теория вычислительного обучения
Обобщение опыта
Основная цель в обучении – обобщение своего опыта. Обобщением в рассматриваемом контексте является способность обучающейся машины к точному выполнению новых, ранее незнакомых примеров/задач после изучения набора обучающих данных.
Вычислительный анализ алгоритмов машинного обучения и их производительности
Вычислительный анализ ML-алгоритмов и их производительности является разделом теоретической информатики, известным как теория вычислительного обучения, с использованием модели «вероятно приблизительно правильного обучения» (PAC).
Одним из способов количественной оценки ошибки обобщения является разложение смещения-вариации.











