Главная » Знания и навыки » Машинное обучение: как его понимать. И как заработать на машинном обучении и искусственном интеллекте (сразу полная версия бесплатно доступна) Маргарита Васильевна Акулич читать онлайн полностью / Библиотека

Машинное обучение: как его понимать. И как заработать на машинном обучении и искусственном интеллекте

На нашем сайте вы можете читать онлайн «Машинное обучение: как его понимать. И как заработать на машинном обучении и искусственном интеллекте». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Учебная и научная литература, Прочая образовательная литература. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.

Краткое содержание книги Машинное обучение: как его понимать. И как заработать на машинном обучении и искусственном интеллекте, аннотация автора и описание

Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Машинное обучение: как его понимать. И как заработать на машинном обучении и искусственном интеллекте. Предисловие указано в том виде, в котором его написал автор (Маргарита Васильевна Акулич) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.

Описание книги

В предлагаемой книге с опорой на англоязычные источники рассказано о весьма популярном сегодня направлении — машинном обучении. Раскрыты его определение и ряд аспектов. Помимо этого, даны советы по зарабатыванию на машинном обучении и искусственном интеллекте.

Машинное обучение: как его понимать. И как заработать на машинном обучении и искусственном интеллекте читать онлайн полную книгу - весь текст целиком бесплатно

Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Машинное обучение: как его понимать. И как заработать на машинном обучении и искусственном интеллекте без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.

Текст книги

Шрифт
Размер шрифта
-
+
Межстрочный интервал

Известен также применяемый для обозначения всей области термин «наука о данных».

Если говорить о традиционном статистическом анализе, ему требуется априорный выбор модели, которая наиболее подходит для набора данных исследования. Помимо этого, практикуется включение в анализ лишь значимых или теоретически значимых переменных, базирующихся на предшествующем опыте.

Построение Ml, наоборот, не происходит на предварительно структурированной модели; скорее, данные формируют модель, обнаруживая имеющиеся основные закономерности.

Тут будет реклама 1

Чем больше входных данных (переменных) используется в целях обучения модели, тем большая точность будет у конечной модели. Лео Брейманом выделены 2 парадигмы статистического моделирования [1]:

модель данных и алгоритмическую модель, где «алгоритмическая модель» означает более или менее алгоритмы машинного обучения, такие как Random Forest.

Некоторыми статистиками  были взяты на вооружение методы машинного обучения, что привело к созданию объединенной области, которую они назвали «статистическим обучением».

Тут будет реклама 2

ML и оптимизация

ML также имеет существенную связь с оптимизацией: формулирование многих задач обучения происходит как минимизация некоторой функции потерь на обучающем наборе примеров.

Функции потерь выражают расхождение между предсказаниями обучаемой модели и реальными примерами задачи (к примеру, при осуществлении классификации требуется присвоение метки примерам, и модели обучаются правильному предсказанию заранее присвоенных меток на солидном количестве примеров).

Тут будет реклама 3

Различие между оптимизацией и ML машинным обучением связано с целью обобщения: если алгоритмы оптимизации позволяют минимизировать потери на обучающем множестве, то машинное обучение нацелено на минимизацию потерь на невидимых выборках. Характеристика обобщения различных алгоритмов обучения является активной темой современных исследований, особенно для алгоритмов глубокого обучения.

Обобщение является концепцией, согласно которой люди, животные и искусственно созданные нейросети прибегают к использованию прошлого опыта в настоящих ситуациях обучения, когда условия в данных ситуациях считаются схожими.

Тут будет реклама 4
Обучающимся ради более эффективной ориентации в мире используются обобщенные модели, принципы и иные сходства между опытом прошлым и опытом новым.

Примером может служить узнавание человека о том, что каждый раз, когда он ест инжир, его горло начинает чесаться и опухать.

Добавить мнение

Ваша оценка

Кликните на изображение чтобы обновить код, если он неразборчив

Мнения

Еще нет комментариев о книге Машинное обучение: как его понимать. И как заработать на машинном обучении и искусственном интеллекте, и ваше мнение может быть первым и самым ценным! Расскажите о своих впечатлениях, поделитесь мыслями и отзывами. Ваш отзыв поможет другим читателям сделать правильный выбор. Не стесняйтесь делиться своим мнением!

Другие книги автора

Понравилась эта книга? Познакомьтесь с другими произведениями автора Маргарита Васильевна Акулич! В этом разделе мы собрали для вас другие книги, написанные вашим любимым писателем.

Похожие книги