На нашем сайте вы можете читать онлайн «Методика преподавания математики в начальной школе». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Научно-популярная литература. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Методика преподавания математики в начальной школе

Дата выхода
10 апреля 2022
Краткое содержание книги Методика преподавания математики в начальной школе, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Методика преподавания математики в начальной школе. Предисловие указано в том виде, в котором его написал автор (Teacher.elementary.school) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Несколько лекций по методике преподавания математики составленные лучшими преподавателями.
Методика преподавания математики в начальной школе читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Методика преподавания математики в начальной школе без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
г) Равные треугольники имеют равные площади. Треугольники АВС и МНР имеют равные площади. Следовательно, они равны.
2. Закончите умозаключения так, чтобы они были дедуктивными.
а) Все квадраты – прямоугольники. Все прямоугольники – многоугольники. Следовательно, … .
б) В любом прямоугольнике сумма внутренних углов равна 360? . Четырехугольник АВСD – … .
III. Обычно, в математике, когда говорят о доказательстве, имеют в виду проверку высказанного утверждения.
Доказать какое-либо утверждение – это значит показать, что это утверждение логически следует из системы истинных и связанных с ним утверждений.
В логике считают, что если рассматриваемое утверждение логически следует из уже доказанных утверждений, то оно обоснованно и также истинно, как и они. Т.е. основным способом доказательства является дедуктивный вывод.
Доказательство – это логическая операция, в процессе которой обосновывается истинность какого-либо утверждения с помощью других истинных и связанных с ним утверждений.
Доказательство в виде цепочки умозаключений выполняется в соответствии с правилами вывода и указанием всех посылок, оно не предназначено для постоянного использования на практике, где чаще пользуются свернутыми схемами умозаключений.
Применяются не только правила построения дедуктивных умозаключений, но и четыре основных закона логики:
1.
Каждая мысль, повторяемая в рассуждении, должна быть тождественна самой себе. Это означает, что в процессе рассуждения нельзя подменять одну мысль другой, а одно понятие другим. Нельзя тождественные мысли выдавать за различные, а различные за тождественные.
2.Закон непротиворечия.
Высказывание и его отрицание не могут быть одновременно истинными, одно из них всегда ложно.
Если в в мышлении или речи человека обнаружено логическое противоречие, то такое мышление считается неправильным, а суждение вытекающее из него – ложным.
3. Закон исключенного третьего.
Из двух противоречивых высказываний об одном и том же предмете, одно – истинно, другое – ложное, третьего быть не может.
Этот закон требует выбора одной из взаимоисключающих альтернатив.
4. Закон достаточного основания.
Всякое истинное утверждение должно быть обосновано с помощью других утверждений, истинность которых уже доказана.
Т.е.





