Главная » Знания и навыки » Методика преподавания математики в начальной школе (сразу полная версия бесплатно доступна) Teacher.elementary.school читать онлайн полностью / Библиотека

Методика преподавания математики в начальной школе

На нашем сайте вы можете читать онлайн «Методика преподавания математики в начальной школе». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Научно-популярная литература. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.

0 баллов
0 мнений
0 чтений

Дата выхода

10 апреля 2022

Краткое содержание книги Методика преподавания математики в начальной школе, аннотация автора и описание

Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Методика преподавания математики в начальной школе. Предисловие указано в том виде, в котором его написал автор (Teacher.elementary.school) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.

Описание книги

Несколько лекций по методике преподавания математики составленные лучшими преподавателями.

Методика преподавания математики в начальной школе читать онлайн полную книгу - весь текст целиком бесплатно

Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Методика преподавания математики в начальной школе без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.

Текст книги

Шрифт
Размер шрифта
-
+
Межстрочный интервал

Например, объем понятия «квадрат» является частью объема понятия «прямоугольник», а в содержании, понятия «квадрат» содержится больше свойств, чем в содержании понятия «прямоугольник» («все стороны равны», «диагонали взаимно перпендикулярны», «диагонали равны» и другие).

Любое понятие нельзя усвоить, не осознавая его взаимосвязи с другими понятиями. Поэтому важно знать, в каких отношениях могут находиться эти понятия, и уметь устанавливать эти связи.

Понятия обозначают строчными буквами латинского алфавита: а, b, c, d, …, z.

Поэтому, если заданы два понятия а и b, то объемы этих понятий обозначают соответственно А и В.

Они могут находится в различных отношениях.

Если А cВ (А ? В), то говорят, что понятие а – видовое по отношению к понятию b, а понятие b – родовое по отношению к понятию а.

Например: если а – это «прямоугольник», b – это «четырехугольник», то их объемы А и В находятся в отношении включения (А cВ и А ? В ), т.к. каждый прямоугольник является четырехугольником.

Поэтому можно утверждать, что понятие «прямоугольник» – видовое по отношению к понятию «четырехугольник», а понятие «четырехугольник» – родовое по отношению к понятию «прямоугольник».

Если А = В, то говорят, что понятия а и bтождественны.

1) Понятия рода и вида относительны: одно и то же понятие может быть родовым по отношению к одним понятиям и видовым по отношению к другим. Например: понятие «прямоугольник» – родовое по отношению к понятию «квадрат» и видовым по отношению к понятию «четырехугольник».

2) Для понятия прямоугольник существует несколько родовых понятий – «четырехугольник», «параллелограмм», «многоугольник». Среди них можно указать ближайшее – параллелограмм».

3) Видовое понятие обладает всеми свойствами родового понятия. Квадрат являясь видовым понятием по отношению к понятию «прямоугольник», обладает всеми свойствами, присущими прямоугольнику.

Отношения между понятиями, изображая объемы, можно показать с помощью кругов Эйлера.

Например:

а) а – «прямоугольник», b – «ромб»: объемы пересекаются, но ни одно множество не является подмножеством другого, следовательно понятия «прямоугольник» и «ромб» не находятся в отношении рода и вида.

А             В

б) а – «многоугольник», b – «параллелограмм»: объемы данных понятий находятся в отношении включения, но не совпадают – всякий параллелограмм является многоугольником, но не наоборот.

Добавить мнение

Ваша оценка

Кликните на изображение чтобы обновить код, если он неразборчив

Мнения

Еще нет комментариев о книге Методика преподавания математики в начальной школе, и ваше мнение может быть первым и самым ценным! Расскажите о своих впечатлениях, поделитесь мыслями и отзывами. Ваш отзыв поможет другим читателям сделать правильный выбор. Не стесняйтесь делиться своим мнением!

Похожие книги